IMPORTANT NOTE: The information contained in this document supersedes all previously published information regarding this product. Product specifications are subject to change without prior notice.

Part Number MN/LBC4000.IOM / CD-MNLBC4000 Revision 5
TABLE OF CONTENTS

TABLE OF CONTENTS .. III

TABLES ... XI

FIGURES .. XII

PREFACE ... XV

About this Manual .. xv

Disclaimer ... xv

Conventions and References ... xvi

 Patents and Trademarks ... xvi
 Warnings, Cautions, Notes, and References ... xvi
 Examples of Multi-Hazard Notices .. xvi
 Recommended Standard Designations .. xvii

Safety and Compliance ... xvii

 Electrical Safety and Compliance .. xvii
 Electrical Installation .. xvii
 Operating Environment .. xvii

European Union Radio Equipment and Telecommunications Terminal
Equipment (R&TTE) Directive (1999/5/EC) and EN 301 489-1 xviii

 European Union Low Voltage Directive (LVD) (2006/95/EC) xix
 European Union RoHS Directive (2002/95/EC) .. xix

European Union Telecommunications Terminal Equipment Directive (91/263/EEC) ... xix

 CE Mark ... xx

Product Support .. xx

Comtech EF Data Headquarters .. xx

Warranty Policy .. xx
Limitations of Warranty.. xxi
Exclusive Remedies... xxii

CHAPTER 1. INTRODUCTION ... 1–1

1.1 Overview ... 1–1

1.2 Functional Description .. 1–1

1.3 Converter Features ... 1–3
 1.3.1 Physical Description ... 1–3
 1.3.2 Dimensional Envelope ... 1–4
 1.3.3 Front Panel .. 1–5
 1.3.4 Rear Panel .. 1–6

CHAPTER 2. SPECIFICATIONS ... 2–1

2.1 Physical and Environmental Specifications .. 2–1
 2.1.1 Regulatory Compliance ... 2–1
 2.1.2 Physical Specifications ... 2–1
 2.1.3 Temperature Range .. 2–1
 2.1.4 Humidity (Non-condensing) ... 2–1
 2.1.5 Operational Altitude ... 2–2
 2.1.6 Shock ... 2–2
 2.1.7 Front Panel Features ... 2–2
 2.1.7.1 LED Monitoring .. 2–2
 2.1.7.2 Vacuum Fluorescent Display (VFD) .. 2–2
 2.1.7.3 Keypad .. 2–2
 2.1.7.4 Power Switch ... 2–2
 2.1.7.5 Modular Design ... 2–3
 2.1.7.5.1 LBC-4000 L-Band Up Converter IDU Module 2–3
 2.1.7.5.2 LBC-4000 L-Band Down Converter IDU Module 2–4
 2.1.8 Rear Panel Features .. 2–4
 2.1.8.1 External Reference Connector ... 2–4
 2.1.8.2 RF Connectors Access ... 2–5
 2.1.8.3 IF Connectors Access ... 2–5
 2.1.8.4 Ethernet Connector .. 2–5
 2.1.8.5 Serial Connectors ... 2–6
 2.1.8.6 Chassis Power and Grounding .. 2–6
2.1.8.6.1 Power Supply Input ... 2–6
2.1.8.6.2 Grounding .. 2–6

CHAPTER 3. INSTALLATION AND STARTUP 3–1

3.1 Unpack and Inspect the Shipment .. 3–1

3.2 Install the Unit into a Rack Enclosure .. 3–3
 3.2.1 Install the Optional Rear Support Brackets Kit 3–5
 3.2.2 Install the Optional Rack Slide Set .. 3–7

3.3 Connect External Cables ... 3–8

3.4 Connect Prime Power .. 3–8

3.5 Converter IDU Modules Management ... 3–8

CHAPTER 4. REAR PANEL CONNECTORS 4–1

4.1 Overview – Cabling Connection Types ... 4–1
 4.1.1 Coaxial Cable Connections ... 4–2
 4.1.1.1 ‘BNC’ .. 4–3
 4.1.1.2 ‘TNC’ .. 4–3
 4.1.1.3 Type ‘N’ .. 4–3
 4.1.1.4 Type ‘F’ .. 4–3
 4.1.1.5 Type ‘SMA’ .. 4–3
 4.1.2 D-Subminiature Cable Connections .. 4–4
 4.1.3 RJ-45, RJ-48 Cable Connections ... 4–4
 4.1.4 USB Cable Connections ... 4–5

4.2 Unit Connectors .. 4–6
 4.2.1 Operational Connections .. 4–6
 4.2.2 Power and Ground Connections .. 4–9
 4.2.2.1 Power Interface Module – Standard AC Unit 4–9
 4.2.2.2 AC Operation – Connecting Prime Power 4–10
 4.2.3 Optional -48VDC Filter Input Module 4–10
 4.2.5 Chassis Ground Interface .. 4–11
 4.2.6 Applying Power to the LBC-4000 ... 4–12
CHAPTER 5. FIRMWARE UPDATE .. 5–1

5.1 Firmware Overview ... 5–1
 5.1.1 LBC-4000 Firmware Update Procedure Summary......................... 5–1
 5.1.2 About Firmware Numbers, File Versions, and Formats 5–2

5.2 Prepare for the Firmware Download .. 5–3
 5.2.1 Required User-supplied Items .. 5–3
 5.2.2 Configure the Terminal Emulator Program 5–3
 5.2.3 Get the LBC-4000 Management IP Address and Firmware Information
 .. 5–3
 5.2.3.1 Use the LBC-4000 Front Panel to Get the Management IP Address
 and Firmware information... 5–4
 5.2.3.2 Use the HTTP Interface to Find the Firmware Information 5–4
 5.2.3.3 Use the Serial Interface to Find the Firmware Information 5–5
 5.2.4 Make a Temporary Folder (Subdirectory) on the User PC 5–6
 5.2.4.1 Use Windows Desktop to Make a Folder 5–6
 5.2.4.2 Use Windows Explorer to Make a Folder 5–7
 5.2.4.3 Use the Run and Browse Windows to Make a Folder 5–7
 5.2.4.4 Use Windows Command-line or Command Prompt to Make a Folder
 .. 5–8

5.3 Download and Extract the Firmware Update Files 5–9
 5.3.1.1 Use Windows Desktop to View Folder Contents 5–11
 5.3.1.2 Use Windows Command-line to View Folder Contents 5–11

5.4 Upload the Firmware Files and Update the LBC-4000 Unit 5–11
 5.4.1 Important Considerations ... 5–11
 5.4.2 Steps to “CReflash” Upload the Firmware Files 5–12
 5.4.3 Steps to FTP Upload the Firmware Files .. 5–13
 5.4.4 Steps to Complete the Firmware Update Procedure 5–14
 5.4.4.1 Select the Boot Image .. 5–14
 5.4.4.1.1 Use the Front Panel to Select the Boot Image 5–14
 5.4.4.1.2 Use the HTTP Interface to Select the Boot Image 5–14
 5.4.4.2 Reboot the Unit .. 5–15
 5.4.4.2.1 Hard-reboot the Unit from the Rear Panel 5–15
 5.4.4.2.2 Soft-reboot the Unit from the HTTP Interface 5–15
CHAPTER 6. FRONT PANEL OPERATION .. 6–1

6.1 Front Panel Overview .. 6–1
 6.1.1 Power Up the LBC-4000 .. 6–1
 6.1.2 LED Indicators ... 6–2
 6.1.3 Vacuum Fluorescent Display (VFD) .. 6–3
 6.1.4 Keypad ... 6–4

6.2 Front Panel Operation – Menu Matrix ... 6–5
 6.2.1 Opening Screen ... 6–6
 6.2.2 Main Menu .. 6–6
 6.2.3 (SELECT:) CONFIG (Configuration) Menu Branch 6–6
 6.2.3.1 (CONFIG:) CONV-A or CONV-B (Converter Unit A or Unit B) 6–7
 6.2.3.1.1 (CONFIG:) CnvA or CnvB → FREQ/MUTE 6–7
 6.2.3.1.2 CONFIG CnvA or CnvB → ATTEN/SLOPE 6–8
 6.2.3.2 (CONFIG:) REMOTE (Remote Control) Submenu 6–9
 6.2.3.2.1 (REMOTE:) Local ... 6–9
 6.2.3.2.2 (REMOTE:) SERIAL .. 6–9
 6.2.3.2.3 (REMOTE:) ETHERNET ... 6–10
 6.2.3.2.3.1 (REMOTE:) ETHERNET → ADDRESS 6–10
 6.2.3.2.3.2 (REMOTE:) ETHERNET → GATEWAY 6–10
 6.2.3.2.3.3 (REMOTE:) ETHERNET → SNMP 6–11
 6.2.3.3 (CONFIG:) REDUND (Redundancy) Submenu 6–13
 6.2.3.4 CONFIG: REFADJ (Reference Oscillator Adjustment) 6–13
 6.2.3.5 CONFIG: SPECT-INV (Spectrum Inversion) 6–14
 6.2.4 (SELECT:) MONITOR Menu Branch ... 6–14
 6.2.5 (SELECT:) FAULTS Menu Branch ... 6–15
 6.2.5.1 (FAULTS:) CURRENT ... 6–15
 6.2.5.2 (FAULTS:) STORED ... 6–16
 6.2.5.2.1 (FAULTS:) STORED → VIEW .. 6–17
 6.2.5.2.2 (FAULTS:) STORED → CLEAR-ALL ... 6–17
 6.2.6 (SELECT:) UTILITY Menu Branch .. 6–18
 6.2.6.1 (UTILITY:) TIME (Real-Time Clock) Submenu 6–18
 6.2.6.2 (UTILITY:) DISP (VFD Display) Submenu 6–18
 6.2.6.3 (UTILITY:) FIRMWARE Submenu .. 6–19
 6.2.6.3.1 (FIRMWARE:) INFO ... 6–19
 6.2.6.3.1.1 (FIRMWARE:) INFO → BOOTROM 6–19
 6.2.6.3.1.2 (FIRMWARE:) INFO → IMAGE#1/#2 6–20
 6.2.6.3.2 (FIRMWARE:) SELECT ... 6–20
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.6.4</td>
<td>(UTILITY:) AID (Application Identification String) Submenu</td>
<td>6–21</td>
</tr>
<tr>
<td>6.2.6.5</td>
<td>(UTILITY:) LAMPTST Submenu</td>
<td>6–22</td>
</tr>
<tr>
<td>6.2.6.6</td>
<td>(UTILITY:) RELAY Submenu</td>
<td>6–22</td>
</tr>
<tr>
<td>6.2.6.7</td>
<td>(UTILITY:) SCRSAVER Submenu</td>
<td>6–22</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.2.6.7.1</td>
<td>(UTILITY:) SCRSAVER  Theme</td>
<td>6–23</td>
</tr>
<tr>
<td>6.2.6.7.2</td>
<td>(UTILITY:) SCRSAVER  Time</td>
<td>6–24</td>
</tr>
</tbody>
</table>

CHAPTER 7. ETHERNET INTERFACE OPERATION

7.1 Overview .. 7–1

7.1.1 Prerequisites ... 7–2

7.2 SNMP Interface .. 7–2

7.2.1 Management Information Base (MIB) Files .. 7–2

7.2.1.1 ComtechEFData Root MIB File ... 7–2

7.2.1.2 LBC-4000 Common MIB File .. 7–3

7.2.1.3 LBC-4000 Traps MIB File ... 7–3

7.2.2 SNMP Community Strings .. 7–3

7.2.3 SNMP Traps .. 7–4

7.3 Telnet Interface ... 7–4

7.3.1 Using HyperTerminal for Telnet Remote Control Operation 7–5

7.3.1.1 Configure HyperTerminal for Telnet Remote Control Operation ... 7–6

7.4 HTTP (Web Server) Interface .. 7–7

7.4.1 HTTP Interface User Login... 7–7

7.4.2 HTTP Interface Features ... 7–9

7.4.2.1 Menu Tree .. 7–9

7.4.2.2 Page Navigation ... 7–9

7.4.2.3 Page Sections ... 7–9

7.4.2.4 Action Buttons.. 7–10

7.4.2.4.1 Page Refresh ... 7–10

7.4.2.5 Drop-down Lists ... 7–10

7.4.2.6 Text or Data Entry ... 7–10

7.5 HTTP Interface Page Examples and Descriptions 7–11

7.5.1 Home Pages.. 7–11

7.5.1.1 Home | Home .. 7–11

7.5.1.2 Home | Contact ... 7–12

7.5.1.3 Home | Support ... 7–13
CHAPTER 8. SERIAL INTERFACE OPERATION..........................8–1

8.1 Overview ...8–1
 8.1.1 Prerequisites ...8–1
 8.1.2 EIA-485 ..8–2
 8.1.3 EIA-232 ..8–3

8.2 Remote Commands and Queries Overview8–3
 8.2.1 Packet Structure ...8–3
 8.2.1.1 Start of Packet Character ...8–3
 8.2.1.2 Target (Device) Address ..8–3
 8.2.1.3 Address Delimiter ..8–4
 8.2.1.4 Instruction Code ...8–4
 8.2.1.5 Instruction Code Qualifier ..8–4
 8.2.1.5.1 Error Response ..8–5
 8.2.1.6 Optional Message Arguments8–5
 8.2.1.7 End of Packet ...8–6

8.3 Serial Remote Commands and Queries8–6
 8.3.1 AID (Application Identification) ...8–8
 8.3.2 ATO (Attenuation Offset) ..8–8
 8.3.3 ATT (Attenuation Level) ..8–9
 8.3.4 CAA (Clear All Alarms) ..8–9
 8.3.5 CAS (Concise Alarm Status) ...8–10
 8.3.6 CCS (Concise Configuration Status)8–10
 8.3.7 CMM (Configure Mute Mode) ..8–11
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.8</td>
<td>CMS (Concise Maintenance Status)</td>
<td>8–11</td>
</tr>
<tr>
<td>8.3.9</td>
<td>CUS (Concise Utility Status)</td>
<td>8–12</td>
</tr>
<tr>
<td>8.3.10</td>
<td>DAT (Set RTC [Real-Time Clock] Date)</td>
<td>8–12</td>
</tr>
<tr>
<td>8.3.11</td>
<td>FBU (Force Backup Unit)</td>
<td>8–12</td>
</tr>
<tr>
<td>8.3.12</td>
<td>FRE (Operating Frequency)</td>
<td>8–13</td>
</tr>
<tr>
<td>8.3.13</td>
<td>FRL (Fault Relay Logic)</td>
<td>8–13</td>
</tr>
<tr>
<td>8.3.14</td>
<td>FRM (Retrieve Firmware Number)</td>
<td>8–14</td>
</tr>
<tr>
<td>8.3.15</td>
<td>FRW (Retrieve Legacy Firmware Number)</td>
<td>8–14</td>
</tr>
<tr>
<td>8.3.16</td>
<td>IMG (Select Boot Image)</td>
<td>8–15</td>
</tr>
<tr>
<td>8.3.17</td>
<td>IPA (Management IP Address)</td>
<td>8–15</td>
</tr>
<tr>
<td>8.3.18</td>
<td>IPG (Gateway IP Address)</td>
<td>8–15</td>
</tr>
<tr>
<td>8.3.19</td>
<td>LAA (List All Alarms)</td>
<td>8–16</td>
</tr>
<tr>
<td>8.3.20</td>
<td>LRS (Local or Remote State)</td>
<td>8–16</td>
</tr>
<tr>
<td>8.3.21</td>
<td>MAC (Retrieve Unit MAC Address)</td>
<td>8–16</td>
</tr>
<tr>
<td>8.3.22</td>
<td>MUT (Mute State)</td>
<td>8–17</td>
</tr>
<tr>
<td>8.3.23</td>
<td>ONL (Online State)</td>
<td>8–17</td>
</tr>
<tr>
<td>8.3.24</td>
<td>PNM (Retrieve Part Number)</td>
<td>8–17</td>
</tr>
<tr>
<td>8.3.25</td>
<td>RAS (Retrieve Alarm Status)</td>
<td>8–18</td>
</tr>
<tr>
<td>8.3.26</td>
<td>RCS (Retrieve Configuration Status)</td>
<td>8–18</td>
</tr>
<tr>
<td>8.3.27</td>
<td>RED (Redundancy Mode)</td>
<td>8–19</td>
</tr>
<tr>
<td>8.3.28</td>
<td>REM (Remote Mode)</td>
<td>8–19</td>
</tr>
<tr>
<td>8.3.29</td>
<td>RET (Retrieve Equipment Type)</td>
<td>8–19</td>
</tr>
<tr>
<td>8.3.30</td>
<td>RET_y_ (Retrieve Module Type)</td>
<td>8–20</td>
</tr>
<tr>
<td>8.3.31</td>
<td>RMS (Retrieve Maintenance Status)</td>
<td>8–20</td>
</tr>
<tr>
<td>8.3.32</td>
<td>RUS (Retrieve Utility Status)</td>
<td>8–21</td>
</tr>
<tr>
<td>8.3.33</td>
<td>SAM (Set Auto/Manual Switching Mode)</td>
<td>8–21</td>
</tr>
<tr>
<td>8.3.34</td>
<td>SAS (Summary Alarm Status)</td>
<td>8–21</td>
</tr>
<tr>
<td>8.3.35</td>
<td>SBR (Remote Baud Rate)</td>
<td>8–22</td>
</tr>
<tr>
<td>8.3.36</td>
<td>SPA (Set Physical Address)</td>
<td>8–22</td>
</tr>
<tr>
<td>8.3.37</td>
<td>SPI (Spectral Inversion)</td>
<td>8–22</td>
</tr>
<tr>
<td>8.3.38</td>
<td>SRO (Reference Oscillator Adjustment)</td>
<td>8–23</td>
</tr>
<tr>
<td>8.3.39</td>
<td>SSA (Slope Adjustment Level)</td>
<td>8–23</td>
</tr>
<tr>
<td>8.3.40</td>
<td>SSN (Retrieve Serial Number)</td>
<td>8–23</td>
</tr>
<tr>
<td>8.3.41</td>
<td>TIM (Set RTC [Real-Time Clock] Time)</td>
<td>8–24</td>
</tr>
<tr>
<td>8.3.42</td>
<td>VFD (Set Vacuum Fluorescent Display Brightness)</td>
<td>8–24</td>
</tr>
</tbody>
</table>
APPENDIX A. UP/DOWN CONVERTER IDU MODULE REMOVAL/RE-INSTALLATION .. A–1
A.1 Overview ... A–1
A.2 IDU Module Removal Procedure .. A–2
A.3 IDU Module Re-Installation Procedure ... A–5

APPENDIX B. REDUNDANCY OPERATION ... B–1
B.1 Overview ... B–1
B.2 LBC-4000 Front Panel Operations .. B–2
 B.2.1 Using the Front Panel Menus ... B–4
 B.2.1.1 Main Menu .. B–4
 B.2.1.2 CONFIG (Configuration) Menu .. B–4
 B.2.1.3 (CONFIG:) REDUND (Redundancy) ... B–5
 B.2.1.4 Gain Offset for Redundant Operations .. B–6
B.3 Redundancy Operations Using the LBC-4000 HTTP Interface B–7
B.4 Redundancy Operations Using Serial Remote Control B–8
 B.4.1 FBU (Force Backup Unit) .. B–8
 B.4.2 RED (Redundancy Mode) .. B–8
 B.4.3 SAM (Set Auto/Manual Switching Mode) .. B–9

TABLES

Table 4-1. ‘10/100 ETHERNET’ M&C Interface Connector Pinout 4–7
Table 4-2. ‘P1 | RELAY’ Pinout ... 4–8
Table 4-3. ‘J1 | COM1’ 2-Wire EIA-485 Pinout .. 4–8
Table 4-4. ‘J1 | COM1’ 4-Wire EIA-485 Pinout .. 4–8
Table 4-5. ‘J1 | COM1’ EIA-232C Pinout ... 4–9
Table 4-6. DC Input Filter Module Pinouts ... 4–11
FIGURES

Figure 1-1. Comtech EF Data LBC-4000 L-Band Up/Down Converter 1–1
Figure 1-2. LBC-4000 Typical Application Block Diagram 1–2
Figure 1-3. LBC-4000 Dimensional Envelope ... 1–4
Figure 1-4. Front Panel View .. 1–5
Figure 1-5. Rear Panel View (Optional Redundant Chassis) 1–6
Figure 1-6. Rear Panel – Initially Released Chassis (OBSOLETE) 1–7
Figure 3-1. Unpack and Inspect the Shipment ... 3–1
Figure 3-2. Install the Unit into a Rack Enclosure .. 3–4
Figure 3-3. Install the Optional Rear-Mounting Support Brackets Kit 3–5
Figure 3-4. Install the Optional Rack Slide Set ... 3–7
Figure 4-1. Coaxial Connector Examples ... 4–2
Figure 4-2. D-Subminiature Connector Examples ... 4–4
Figure 4-3. RJ-45/RJ-48 Connector Example ... 4–4
Figure 4-4. USB Connector Examples .. 4–5
Figure 4-5. LBC-4000 Rear Panel – Current Ethernet-ready Chassis with Optional
 Redundancy .. 4–6
Figure 4-6. LBC-4000 Rear Panel – Original Serial-only Chassis with Optional
 Redundancy .. 4–6
Figure 4-7. Standard AC Power Module ... 4–9
Figure 4-8. Apply AC Power to the Unit ... 4–10
Figure 4-9. Optional -48VDC Filter Input Module with User-Supplied Power
 Harness .. 4–10
Figure 4-10. Chassis Ground Interface ... 4–12
Figure 4-11. Available Power Switch ... 4–12
Figure 6-1. Front Panel View ... 6–1
Figure 6-2. Available Power Switch ... 6–1
Figure 6-3. Front Panel LEDs .. 6–2
Figure 7-1. Telnet Interface Example – Windows Command-line 7–4
Figure 7-2. Telnet Interface Example – HyperTerminal 7–5
Figure 7-3. Configure HyperTerminal .. 7–6
Figure 7-4. HTTP Interface “Splash” Page Example 7–8
Figure 7-5. HTTP Interface Menu Tree (FW Ver. 1.2.5) 7–9
Figure 7-6. ‘Home | Home’ Page .. 7–11
Figure 7-7. ‘Home | Contact’ Page ... 7–12
Figure 7-8. ‘Home | Support’ Page ... 7–13
Figure 7-9. ‘Admin | Access’ Page ... 7–14
Figure 7-10. ‘Admin | SNMP’ Page ... 7–16
Figure 7-11. ‘Config | Converter A/ B’ Pages .. 7–17
Figure 7-12. ‘Config | Ref’ Page .. 7–19
Figure 7-13. ‘Config | Utility’ Page... 7–20
Figure 7-14. ‘Config | Redundancy’ Page.. 7–22
Figure 7-15. Config | Serial page... 7–23
Figure 7-16. ‘Status | Summary’ Page .. 7–24
Figure 7-17. ‘Status | Faults’ Page ... 7–26
Figure A-1. LBC-4000 Chassis – IDU Module Bays ... A–1
Figure B-1. LBC-4000 Redundancy – Functional Schematic B–1
Figure B-2. LBC-4000 Rear Panel – Redundancy Cabling Schematic B–2
Figure B-3. LBC-4000 Front Panel ... B–3
Figure B-4. ‘Config | Redundancy’ page ... B–7
About this Manual

This manual provides installation and operation information for the Comtech EF Data LBC-4000 L-Band Up/Down Converter System. This document is intended for the persons responsible for the operation and maintenance of the LBC-4000.

Revision 5 of this manual represents a rewrite from Revision 4, in order to document the current production models for the LBC-4000 and to update the manual to the current Comtech EF Data Technical Publications Department Standards and Practices. This manual also replaces the Comtech EF Data publication LBC-4000 L-Band Up/Down Converter System with Ethernet Installation and Operation Manual (CEFD P/N MN-LBC4000A).

Disclaimer

Comtech EF Data has reviewed this manual thoroughly in order to provide an easy-to-use guide to this equipment. All statements, technical information, and recommendations in this manual and in any guides or related documents are believed reliable, but the accuracy and completeness thereof are not guaranteed or warranted, and they are not intended to be, nor should they be understood to be, representations or warranties concerning the products described. Further, Comtech EF Data reserves the right to make changes in the specifications of the products described in this manual at any time without notice and without obligation to notify any person of such changes.

If there are any questions regarding this equipment or the information in this manual, please contact Comtech EF Data Product Support.
Conventions and References

Patents and Trademarks

Comtech EF Data acknowledges that all trademarks are the property of the trademark owners.

Warnings, Cautions, Notes, and References

A **WARNING** indicates a potentially hazardous situation that, if not avoided, could result in death or serious injury.

A **CAUTION** indicates a hazardous situation that, if not avoided, may result in minor or moderate injury. **CAUTION** may also be used to indicate other unsafe practices or risks of property damage.

A **NOTE** gives you important information about a task or the equipment.

A **REFERENCE** directs you to important operational information or details furnished elsewhere, either in the manual or in adjunct Comtech EF Data publications.

Examples of Multi-Hazard Notices

![Multi-Hazard Notices](image-url)
Recommended Standard Designations

Electronic Industries Association (EIA) designations supersede Recommended Standard (RS) designations. Reference to the old RS designations may appear where it might concern actual text (e.g., RS-232) displayed on the product panels and on screens or pages in the Serial Remote or HTTP (Web Server) Interfaces. All other references in the manual refer to EIA designations.

CAUTION
It is important that you review and understand the Safety and Compliance information that follows.

Safety and Compliance

Electrical Safety and Compliance

The unit complies with the EN 60950 Safety of Information Technology Equipment (Including Electrical Business Machines) safety standard.

Electrical Installation

CAUTION
CONNECT THE UNIT TO A POWER SYSTEM THAT HAS SEPARATE GROUND, LINE AND NEUTRAL CONDUCTORS. DO NOT CONNECT THE UNIT WITHOUT A DIRECT CONNECTION TO GROUND.

Sect 4.2.2 Unit Ground Connection

Operating Environment

CAUTION
DO NOT OPERATE THE UNIT IN ANY OF THESE EXTREME OPERATING CONDITIONS:

- AMBIENT TEMPERATURES LESS THAN 0° C (32° F) OR MORE THAN 50° C (122° F).
- PRECIPITATION, CONDENSATION, OR HUMID ATMOSPHERES OF
MORE THAN 95% RELATIVE HUMIDITY.

- UNPRESSURIZED ALTITUDES OF MORE THAN 3048 METRES (10,000 FEET).
- EXCESSIVE DUST.
- FLAMMABLE GASES.
- CORROSIVE OR EXPLOSIVE ATMOSPHERES.

European Union Radio Equipment and Telecommunications Terminal Equipment (R&TTE) Directive (1999/5/EC) and EN 301 489-1

Independent testing verifies that the unit complies with the European Union R&TTE Directive, its reference to EN 301 489-1 (Electromagnetic compatibility and Radio spectrum Matters [ERM]; Electromagnetic Compatibility [EMC] standard for radio equipment and services, Part 1: Common technical requirements), and the Declarations of Conformity for the applicable directives, standards, and practices that follow:

- EN 61000-3-2 – Harmonic Currents Emission
- EN 61000-3-3 – Voltage Fluctuations and Flicker.

CAUTION
TO ENSURE THAT THE UNIT COMPLIES WITH THESE STANDARDS, OBEY THESE INSTRUCTIONS:

- Operate the unit with its cover on at all times.
• Use Type ‘D’ connectors that have back-shells with continuous metallic shielding.
• Type ‘D’ cabling must have a continuous outer shield (either foil or braid, or both). The shield must be bonded to the back-shell.
• Use coaxial cable that is of good quality for connections to the Switch Module Type ‘N’ female connectors.

European Union Low Voltage Directive (LVD) (2006/95/EC)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><HAR></td>
<td>Type of power cord required for use in the European Community.</td>
</tr>
</tbody>
</table>

CAUTION: Double-pole/Neutral Fusing
ACHTUNG: Zweipolige bzw. Neutralleiter-Sicherung

International Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>~</td>
<td>Alternating Current</td>
<td>⚡️</td>
<td>Protective Earth</td>
</tr>
<tr>
<td></td>
<td>Fuse</td>
<td>⚡️</td>
<td>Chassis Ground</td>
</tr>
</tbody>
</table>

For additional symbols, refer to Warnings, Cautions and Notes listed earlier in this Preface.

European Union RoHS Directive (2002/95/EC)

This unit satisfies (with exemptions) the requirements specified in the European Union Directive on the Restriction of Hazardous Substances in Electrical and Electronic Equipment (EU RoHS, Directive 2002/95/EC).

European Union Telecommunications Terminal Equipment Directive (91/263/EEC)

In accordance with the European Union Telecommunications Terminal Equipment Directive 91/263/EEC, the unit should not be directly connected to the Public Telecommunications Network.
CE Mark

Comtech EF Data declares that the unit meets the necessary requirements for the CE Mark.

Product Support

For all product support, please call:

+1.240.243.1880

+1.866.472.3963 (toll free USA)

Comtech EF Data Headquarters

http://www.comtechefdata.com

Comtech EF Data Corp.
2114 West 7th Street
Tempe, Arizona USA 85281
+1.480.333.2200

Warranty Policy

Comtech EF Data products are warranted against defects in material and workmanship for a specific period from the date of shipment, and this period varies by product. In most cases, the warranty period is two years. During the warranty period, Comtech EF Data will, at its option, repair or replace products that prove to be defective. Repairs are warranted for the remainder of the original warranty or a 90 day extended warranty, whichever is longer. Contact Comtech EF Data for the warranty period specific to the product purchased.

For equipment under warranty, the owner is responsible for freight to Comtech EF Data and all related customs, taxes, tariffs, insurance, etc. Comtech EF Data is responsible for the freight charges only for return of the equipment from the factory to the owner. Comtech EF Data will return the equipment by the same
method (i.e., Air, Express, Surface) as the equipment was sent to Comtech EF Data.

All equipment returned for warranty repair must have a valid RMA number issued prior to return and be marked clearly on the return packaging. Comtech EF Data strongly recommends all equipment be returned in its original packaging.

Comtech EF Data Corporation’s obligations under this warranty are limited to repair or replacement of failed parts, and the return shipment to the buyer of the repaired or replaced parts.

Limitations of Warranty

The warranty does not apply to any part of a product that has been installed, altered, repaired, or misused in any way that, in the opinion of Comtech EF Data Corporation, would affect the reliability or detracts from the performance of any part of the product, or is damaged as the result of use in a way or with equipment that had not been previously approved by Comtech EF Data Corporation.

The warranty does not apply to any product or parts thereof where the serial number or the serial number of any of its parts has been altered, defaced, or removed.

The warranty does not cover damage or loss incurred in transportation of the product. The warranty does not cover replacement or repair necessitated by loss or damage from any cause beyond the control of Comtech EF Data Corporation, such as lightning or other natural and weather related events or wartime environments.

The warranty does not cover any labor involved in the removal and or reinstallation of warranted equipment or parts on site, or any labor required to diagnose the necessity for repair or replacement.

The warranty excludes any responsibility by Comtech EF Data Corporation for incidental or consequential damages arising from the use of the equipment or products, or for any inability to use them either separate from or in combination
with any other equipment or products.

A fixed charge established for each product will be imposed for all equipment returned for warranty repair where Comtech EF Data Corporation cannot identify the cause of the reported failure.

Exclusive Remedies

Comtech EF Data Corporation’s warranty, as stated is in lieu of all other warranties, expressed, implied, or statutory, including those of merchantability and fitness for a particular purpose. The buyer shall pass on to any purchaser, lessee, or other user of Comtech EF Data Corporation’s products, the aforementioned warranty, and shall indemnify and hold harmless Comtech EF Data Corporation from any claims or liability of such purchaser, lessee, or user based upon allegations that the buyer, its agents, or employees have made additional warranties or representations as to product preference or use.

The remedies provided herein are the buyer’s sole and exclusive remedies. Comtech EF Data shall not be liable for any direct, indirect, special, incidental, or consequential damages, whether based on contract, tort, or any other legal theory.
Chapter 1. INTRODUCTION

1.1 Overview

Comtech EF Data’s LBC-4000 L-Band Up/Down Converter System (Figure 1-1) is designed to interface legacy 70 MHz or 140 MHz equipment to tri-band or quad-band block converters.

Figure 1-1. Comtech EF Data LBC-4000 L-Band Up/Down Converter

1.2 Functional Description

See Chapter 2. SPECIFICATIONS for component specifications.

You may use standard, off-the-shelf coaxial cabling to connect external equipment (e.g., a modem), to each internal converter module. Use coaxial cabling to connect the output for each module to RF equipment either at the same location or at the antenna location. When configured with the redundancy option, the system may contain two diode “OR-ed” internal power supplies for increased reliability.
Figure 1-2 shows the block diagram for a typical LBC-4000 L-Band Up/Down Converter System application.

![Figure 1-2. LBC-4000 Typical Application Block Diagram](image)

The LBC-4000 features:

- Flexible configuration: Two IDU module bays allow for (1) Up Converter Module and (1) Down Converter Module; Dual Up Converters Modules; or Dual Down Converters Modules.
- 70 MHz ±18 MHz IF (optional 140 MHz ±36 MHz)
- Auto band-sensing capabilities
- No spectral inversion
- Low phase noise
- 1 kHz step size
- 5 dB gain adjustment
- 1:1 Redundancy availability
- Remote Monitor and Control (M&C) via the EIA-485/232 Serial Interface or the Ethernet Interface
- Meets or exceeds MIL-STD-188-164A
1.3 Converter Features

1.3.1 Physical Description

The LBC-4000 features a 1RU-high (1.75"") 19-inch wide chassis that is designed for rack mounting into a standard 19-inch (48.26 cm) equipment rack. The unit may also be mounted into the rack using the provided slide mechanisms to allow service without removal from the rack. The unit may be freestanding if desired.

The LBC-4000 drop-down front panel provides access to the ON/OFF switch and installation bays for two Up Converter modules, two Down Converter modules, or one of each. All operator controls, indicators and displays are located on the LBC-4000 front panel. External interface connectors, including those intended for Ethernet or Serial Remote Monitor and Control (M&C), are located on the LBC-4000 rear panel.

<table>
<thead>
<tr>
<th>For:</th>
<th>See:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rack installation and mounting instructions</td>
<td>Chapter 3. INSTALLATION AND STARTUP</td>
</tr>
<tr>
<td>Cabling Connections</td>
<td>Chapter 4. REAR PANEL CONNECTORS</td>
</tr>
<tr>
<td>Firmware Updating Instructions</td>
<td>Chapter 5. FIRMWARE UPDATE</td>
</tr>
<tr>
<td>Local control operating instructions and procedures</td>
<td>Chapter 6. FRONT PANEL OPERATION</td>
</tr>
<tr>
<td>Remote control operating instructions and procedures</td>
<td>Chapter 7. ETHERNET INTERFACE OPERATION and Chapter 8. SERIAL INTERFACE OPERATION</td>
</tr>
<tr>
<td>Maintenance procedures</td>
<td>Appendix A. UP/DOWN CONVERTER IDU MODULE REMOVAL / RE-INSTALLATION</td>
</tr>
<tr>
<td>Redundant system operating instructions and procedures</td>
<td>Appendix B. REDUNDANCY OPERATION</td>
</tr>
</tbody>
</table>
1.3.2 Dimensional Envelope

Dimensions are shown in inches and [millimeters].

Figure 1-3. LBC-4000 Dimensional Envelope
1.3.3 Front Panel

The LBC-4000 front panel (Figure 1-4) provides:

Item 1 – Rack Handles
These handles ease removal and replacement of the chassis into the user-provided rack enclosure.

Item 2 – Available Power Switch
Use this switch, when installed, to turn power to the unit on or off.

Item 3 – LED Indicators
The operational state of the LBC-4000 is represented by two sets of five front panel Light-Emitting Diode (LED) indicators – one set each for ‘CONV A’ and ‘CONV B’. Each set of LEDs conveys operational states as follows:

SUM FAULT
Lights RED when a fault condition has been logged and stored.

MUTE
Lights AMBER when the unit is in Mute Mode.

ONLINE
Lights GREEN when the unit is online and carrying traffic.
UP
Lights GREEN when the module is operating as an UP CONVERTER.

DOWN
Lights GREEN when the module is operating as a DOWN CONVERTER.

Item 4 – Vacuum Fluorescent Display (VFD)
The VFD is an active display showing two lines of 24 characters each. It produces a blue light with adjustable brightness. Nested menus display all available options and prompt you to carry out a required action.

Item 5 – Keypad
The keypad comprises six keyswitches behind a flat membrane. The keys have a positive ‘click’ action that provides tactile feedback. Enter data via the keypad. Data, prompts, and messages are displayed on the VFD.

Item 6 – ‘CONV A’ IDU Module Bay
Item 7 – ‘CONV B’ IDU Module Bay
Each bay accepts one Up Converter or Down Converter IDU Module.

Appendix A. UP/DOWN CONVERTER IDU MODULE REMOVAL / RE-INSTALLATION

1.3.4 Rear Panel

Figure 1-5. Rear Panel View (Optional Redundant Chassis)

External cables are attached to sample point connectors located on the front panel of the unit (Figure 1-5), and to the operational connectors located on the rear panel of the unit (or Figure 1-6).
From left to right:

Item 1 – ‘J2 | EXT REF IN’ Utility Connector
Use this BNC female connector to supply a 5/10 MHz master reference to the entire chassis.

Item 2 – ‘J4 | RF OUT/IN’ (part of IDU Up / Down Converter Module)
Use this Type 'N' female connector as either the ‘CONV B’ L-Band output signal interface (with the Down Converter IDU installed) or the L-Band input signal interface (with the Up Converter IDU installed).

Item 3 – ‘J5 | IF IN/OUT’ (part of IDU Up / Down Converter Module)
Use this BNC female connector as either the ‘CONV B’ downconverted IF input signal (with the Down Converter IDU installed), or the upconverted IF output signal (with the Up Converter IDU installed).

Item 4 – ‘10/100 ETHERNET’ Management Utility Port
Use this 100BaseTX Ethernet RJ-45 port for operation of the Ethernet remote control interfaces.

The LBC-4000 chassis, as initially released, does not provide a ‘10/100 ETHERNET’ 100BaseTX RJ-45 port (Figure 1-6). Ethernet interface operation is not available on these legacy products.

Figure 1-6. Rear Panel – Initially Released Chassis (OBSOLETE)

Item 5 – Optional IF Connector Group
These BNC female ‘IF Primary A / Secondary B’ connector pairs provide the IF “baseball” switch for optional redundancy operations.

Item 6 – Optional RF Connector Group
These Type ‘SMA’ female ‘RF Primary A / Secondary B’ connector pairs provide the RF “baseball” switch for optional redundancy operations.
Item 7 – Power Connection (part of Power Supply module)
Use this Prime Power receptacle for connection to 90 to 125 VAC, or 205 to 240 VAC power sources.
- The standard AC (Alternating Current) unit features an IEC-60320 Type C14 three-prong male connector for use with the provided IEC-60320 Type C13 (female) receptacle power cord for connection to 90 to 125 VAC, or 205 to 240 VAC power sources.
- The optional DC (Direct Current) Filter Input Module input voltage is 48VDC nominal, -36 VDC minimum, -72VDC maximum.

Item 8 – ‘J6 | RF OUT/IN’ (part of IDU Up / Down Converter Module)
Use this Type ‘N’ female connector as either the ‘CONV A’ L-Band output signal interface (with the Down Converter IDU installed) or the L-Band input signal interface (with the Up Converter IDU installed).

Item 9 – ‘J7 | IF IN/OUT’ (part of IDU Up / Down Converter Module)
Use this BNC female connector as either the ‘CONV A’ downconverted IF input signal (with the Down Converter IDU installed), or the upconverted IF output signal (with the Up Converter IDU installed).

Item 10 – ‘P1 | RELAY’ Utility Connector
Use this DB-9F connector to access the Form C Alarms (relay closures).

Item 11 – ‘J1 | COM1’ Serial Management Utility Connector
Use this DB-9F EIA-485/232 connector for operation of the Serial remote control interface.

Item 12 – Unit Ground Lug
Use this #10-32 stud as the command chassis ground.

CAUTION
PROPER GROUNDING PROTECTION IS REQUIRED. You must connect the equipment to the protective earth connection at all times. Use this ground stud during installation, configuration, and operation.
Chapter 2. SPECIFICATIONS

2.1 Physical and Environmental Specifications

2.1.1 Regulatory Compliance

- “CE” as follows:
 - EN 50082-1 (EMC/Generic Immunity)
 - EN 55022 Class B (Emissions)
 - EN 55024 (Immunity)
 - EN 60950 (Safety)
- FCC Part 15 Subpart B
- RoHS-Compliant

2.1.2 Physical Specifications

- Dimensions: 1.75 (1 RU) H x 19.00 W x 22 D inches
 (44.45 mm H x 482.6 mm W x 558.8 mm D)
- Weight: 25 lbs (11.34 kg) Maximum

2.1.3 Temperature Range

- Operating: 32° to 122° F (0° to 50° C)
- Non-operating (Storage): -58° to 160 F° (-50° to 71° C)

2.1.4 Humidity (Non-condensing)

- Operating: 0 to 95% Relative maximum
- Non-operating (Storage): 99% maximum
2.1.5 Operational Altitude

10,000 ft above Mean Sea Level (MSL)

2.1.6 Shock

Normal commercial shipping and handling

2.1.7 Front Panel Features

2.1.7.1 LED Monitoring

Two sets of five Status LEDs – ‘CONV A’ and ‘CONV B’:
- SUM FAULT (RED)
- MUTE (AMBER)
- ONLINE (GREEN)
- UP (GREEN)
- DOWN (GREEN)

2.1.7.2 Vacuum Fluorescent Display (VFD)

2 lines, 24 characters per line.

2.1.7.3 Keypad

Six Keys: [◄] (LEFT), [►] (RIGHT), [↑] (UP), [↓] (DOWN), [ENT] (ENTER), [CLR] (CLEAR)

2.1.7.4 Power Switch

Located behind drop-down front panel
2.1.7.5 Modular Design

(2) IDU Module bays (‘CONV A’ and ‘CONV B’) are located behind the drop-down front panel.

2.1.7.5.1 LBC-4000 L-Band Up Converter IDU Module

| Input Frequency | • STANDARD: 70 MHz ±18 MHz
	• OPTIONAL: 140 MHz ±36 MHz
Output Frequency	950 MHz to 2000 MHz, 1 kHz steps
Input/Output Impedance	50Ω
Input Return Loss	18 dB minimum
Output Return Loss	15 dB minimum
Input connector	BNC female
Output connector	Type ‘N’ female
Gain	25 dB ±1 dB nominal at minimum attenuation
Ripple	• ±.5 dB over any ±18 MHz for standard 70 MHz IF units
	• ±.5 dB over any ±36 MHz for optional 140 MHz IF units
Slope	0.05 dB/MHz
User Attenuation Range	0 to 40 dB, in 0.25 dB steps (STANDARD) or 0.1 dB steps (OPTIONAL)
Input Power Level	To ±10 dBm maximum
Output Power, P1dB	+10 dBm minimum
Third Order Intercept	+20 dBm minimum
Carrier Spurious	-60 dBc
Non-Carrier Spurious	-75 dBm
Transmit Phase Noise	Exceeds MIL-STD-188-164A
Stability	Over Time: ±1 X 10⁻⁹/Day
	Over Temp: ±1 x 10⁻⁸ 32°C to 122°F (0°C to 50°C)
2.1.7.5.2 LBC-4000 L-Band Down Converter IDU Module

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Frequency Range</td>
<td>950 MHz to 2000 MHz, 1 kHz steps</td>
</tr>
<tr>
<td>Output Frequency</td>
<td>• STANDARD: 70 MHz ±18 MHz</td>
</tr>
<tr>
<td></td>
<td>• OPTIONAL: 140 MHz ±36 MHz</td>
</tr>
<tr>
<td>Input/Output Impedance</td>
<td>50Ω</td>
</tr>
<tr>
<td>Input Return Loss</td>
<td>15 dB minimum</td>
</tr>
<tr>
<td>Output Return Loss</td>
<td>20 dB minimum</td>
</tr>
<tr>
<td>Input connector</td>
<td>Type ‘N’ female</td>
</tr>
<tr>
<td>Output connector</td>
<td>BNC female</td>
</tr>
<tr>
<td>Gain</td>
<td>35 dB nominal at minimum attenuation</td>
</tr>
<tr>
<td>Ripple</td>
<td>• ±.5 dB over any ±18 MHz for 70 MHz IF units</td>
</tr>
<tr>
<td></td>
<td>• ±.5 dB over any ±36 MHz for 140 MHz IF units</td>
</tr>
<tr>
<td>Slope</td>
<td>0.05 dB/MHz</td>
</tr>
<tr>
<td>User Attenuation Range</td>
<td>0 to 40 dB, in 0.25 dB steps (STANDARD) or 0.1 dB steps (OPTIONAL)</td>
</tr>
<tr>
<td>Output Power, P1dB</td>
<td>+13 dBm minimum</td>
</tr>
<tr>
<td>Third Order Intercept</td>
<td>+23 dBm minimum</td>
</tr>
<tr>
<td>Carrier Spurious</td>
<td>-60 dBC</td>
</tr>
<tr>
<td>Non-Carrier Spurious</td>
<td>-60 dBm</td>
</tr>
<tr>
<td>Stability</td>
<td></td>
</tr>
<tr>
<td>Over Time</td>
<td>±1 X 10^-9/Day</td>
</tr>
<tr>
<td>Over Temp</td>
<td>±1 x 10^-8 32°F to 122°F (0°F to 50°C)</td>
</tr>
</tbody>
</table>

2.1.8 Rear Panel Features

2.1.8.1 External Reference Connector

- (1X) Type BNC female ‘J2| EXT REF IN’ connector, used to supply a 5 or 10 MHz (auto-detect) @ ±5 dBm master reference input (50Ω impedance) to the entire chassis.
2.1.8.2 RF Connectors Access

- **Standard (part of Up or Down Converter IDU Module):**
 - (1X) ‘J4 | RF OUT/IN’ Type ‘N’ female connector provided for either the ‘CONV B’ L-Band output signal interface (with the Down Converter IDU installed) or the L-Band input signal interface (with the Up Converter IDU installed).
 - (1X) ‘J6 | RF OUT/IN’ Type ‘N’ female connector provided for either the ‘CONV A’ L-Band output signal interface (with the Down Converter IDU installed) or the L-Band input signal interface (with the Up Converter IDU installed).

- **Optional:**
 - (2X) Type ‘SMA’ female ‘RF Primary A / Secondary B’ connector pairs (4X total) provide the RF “baseball” switch for optional redundant operations.

2.1.8.3 IF Connectors Access

- **Standard (part of Up or Down Converter IDU Module):**
 - (1X) ‘J5 | IF IN/OUT’ BNC female connector serves as either the ‘CONV B’ downconverted IF input signal (with the Down Converter IDU installed), or the upconverted IF output signal (with the Up Converter IDU installed).
 - (1X) ‘J7 | IF IN/OUT’ BNC female connector serves as either the ‘CONV A’ downconverted IF input signal (with the Down Converter IDU installed), or the upconverted IF output signal (with the Up Converter IDU installed).

- **Optional:**
 - (2X) BNC female ‘IF Primary A / Secondary B’ connector pairs (4X total) provide the IF “baseball” switch for optional redundant operations.

2.1.8.4 Ethernet Connector

(1X) 100BaseTX RJ-45 female ‘10/100 Ethernet’ Management Utility Port for operation of the Ethernet remote control interfaces (SNMP, Telnet, HTTP).
2.1.8.5 Serial Connectors

- **Summary Alarm**: (1X) DB-9F (D-Subminiature) ‘P1 | Relay’ Utility Connector to access the Form C Alarms (relay closures).
- **Serial Remote Control Interface**: (1X) DB-9F (D-Subminiature) ‘J1 | COM1’ EIA-232/EIA-485 (2-Wire/4-Wire) connector.

2.1.8.6 Chassis Power and Grounding

2.1.8.6.1 Power Supply Input

- **STANDARD AC**:
 - Two 100W power supplies with diode “OR-ed” outputs provide the system supply voltages of +12VDC and +5VDC.
 - 90-260VAC, 47-63 Hz frequency, nominal system power consumption of 35W total dissipation (two up/down converter IDU modules).
 - An IEC-60320 Type C13 (female) three-prong plug power cord for 90-125VAC or 205-240VAC power sources is provided with the converter. This detachable power cord mates with the AC Prime Power Module IEC-60320 Type C14 male connector on the rear of the converter chassis.
- **OPTIONAL DC**:
 The DC Filter Input Module input voltage is 48VDC nominal, -36 VDC minimum, -72VDC maximum.

2.1.8.6.2 Grounding

A #10-32 stud provides a common chassis ground connection among equipment.
Chapter 3. INSTALLATION
AND STARTUP

3.1 Unpack and Inspect the Shipment

Figure 3-1. Unpack and Inspect the Shipment
The LBC-4000 L-Band Up/Down Converter System, its optional Installation and Operation Manual (available online at http://www.comtechefdata.com), and its power cord were packaged and shipped in a reusable cardboard carton containing protective foam spacing (Figure 3-1).

CAUTION

THIS EQUIPMENT CONTAINS PARTS AND ASSEMBLIES SENSITIVE TO DAMAGE BY ELECTROSTATIC DISCHARGE (ESD). USE ESD PRECAUTIONARY PROCEDURES WHEN HANDLING THE EQUIPMENT.

Inspect the shipment. Do these steps:

1. Keep all shipping materials.
2. Check the packing list to make sure the shipment is complete.
3. Inspect the equipment for damage. If damage exists, immediately contact the carrier and Comtech EF Data to submit a damage report.
4. Read the manual.
3.2 Install the Unit into a Rack Enclosure

Install the unit in its assigned position in a rack enclosure (Figure 3-2). You must install the rack in a location with a controlled environment. Failure to obey this requirement can cause damage to the equipment, and denial of subsequent warranty claims. You may use:

- A standard rack-mounted shelf;
- User-supplied screws to secure the front panel to the rack enclosure threaded front mounting rails;
- Comtech EF Data’s optional KT/6228-2 (4”) or KT/6228-3 (10”) Rear Support Brackets Kit (Figure 3-3).
- Comtech EF Data’s optional 22” (FP/SL0007), 24” (FP/SL0008) or 26” (FP/SL0006) Side-Mounting Rack Slide Set (Figure 3-4).
- For information about custom rack enclosures, contact Comtech EF Data Product Support.

CAUTION

CORRECT GROUNDING PROTECTION IS REQUIRED – Connect the ground stud, located on the rear panel of the unit, to a power system that has separate ground, line and neutral conductors. Do not operate the unit without a direct connection to ground.

The rack must be connected to a suitable earthing connection at all times. You must connect the rack ground bar to a suitable earthing demarcation point.

CORRECT AIR VENTILATION IS REQUIRED – Air flow must not be impeded. Make sure there is proper air ventilation. Do not block the top of the rack or the presence of a rack blower. The air temperature inside the rack must never exceed 50°C (122°F).

If there is any doubt, contact Comtech EF Data Product Support during normal business hours.
Feature Description

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Custom Rack Enclosure</td>
</tr>
<tr>
<td>2</td>
<td>LBC-4000 chassis</td>
</tr>
<tr>
<td>3</td>
<td>Standard Rack Shelving</td>
</tr>
<tr>
<td>4</td>
<td>Rack Enclosure Threaded Front Rail (typical)</td>
</tr>
<tr>
<td>5</td>
<td>Unit Front Panel</td>
</tr>
<tr>
<td>6</td>
<td>User-supplied Screws</td>
</tr>
</tbody>
</table>

Figure 3-2. Install the Unit into a Rack Enclosure
3.2.1 Install the Optional Rear Support Brackets Kit

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Back of unit</td>
</tr>
<tr>
<td>2</td>
<td>Rack Enclosure Threaded Rear Mounting Rail (typical)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item</th>
<th>Kit / Quantity</th>
<th>CEFD P/N</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>KT/6228-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>HW/10-32SHLDR</td>
<td>Shoulder Screw, #10</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>HW/10-32FLT</td>
<td>Flat Washer, #10</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>HW/10-32SPLIT</td>
<td>Lock Washer, #10</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>HW/10-32HEXNUT</td>
<td>Hex Nut, #10</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>HW/10-32x1/2RK</td>
<td>Bolt, #10, Rear Support Bracket</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>FP/6138-2</td>
<td>Bracket, Rear Support (4”)</td>
</tr>
<tr>
<td></td>
<td>–</td>
<td>FP/6138-3</td>
<td>Bracket, Rear Support (10”)</td>
</tr>
</tbody>
</table>

Figure 3-3. Install the Optional Rear-Mounting Support Brackets Kit
Tools needed to install the optional KT/6228-2 (4”) or KT/6228-3 (10”) Brackets Kit:
- A medium Phillips™ screwdriver
- A 5/32-inch SAE Allen™ Wrench
- An adjustable Crescent™ wrench.

Do these steps to install the brackets kit (Figure 3-3):
1. Use the #10 flat washers, #10 split washers, and #10 hex nut to secure the #10 shoulder screws to the unit chassis through the rear right and left side mounting slots as shown.
2. Mount the Rear Support Brackets to the rack enclosure threaded rear mounting rails using the #10 Rear Support Bracket Bolts.
3. Slide the unit into the front of the rack enclosure. Make sure that the #10 Shoulder Screws properly engage into the slots of the Rear Support Brackets.
3.2.2 Install the Optional Rack Slide Set

<table>
<thead>
<tr>
<th>CEFD Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FP/SL0007</td>
<td>Bearingless Rack Slide Set – 22”</td>
</tr>
<tr>
<td>FP/SL0008</td>
<td>Bearingless Rack Slide Set – 24”</td>
</tr>
<tr>
<td>FP/SL0006</td>
<td>Bearingless Rack Slide Set – 26”</td>
</tr>
</tbody>
</table>

If the converter is to be mounted on slides, install the provided bearingless rack slide set into the rack cabinet, and onto the sides of the LBC-4000. Use the hardware provided with the slide set that is determined to be appropriate for installation.

Do these steps to install the slide set (Figure 3-4):
1. Use the provided hardware to install one slide onto each side of the unit chassis.
2. Use the provided hardware to install the slide rail components into each interior side of the equipment rack cabinet.
3. Install the unit into the front of the equipment rack. Ensure that the slides properly engage the cabinet-mounted slide rails.

4. Continue to slide the unit into the equipment rack to its final operating position. Then, use four user-provided screws to secure the unit to the equipment rack’s right and left threaded front rails (through the front panel slots).

3.3 Connect External Cables

Proceed to connect all external cables to the connectors outlined in the next chapter (**Chapter 4. REAR PANEL CONNECTIONS**). Should difficulties occur, call Comtech EF Data Product Support for assistance.

3.4 Connect Prime Power

An IEC-60320 Type C13 (female) three-prong plug power cord for 90-125VAC or 205-240VAC power sources is provided with the converter. This detachable power cord mates with the AC Prime Power Module IEC-60320 Type C14 male connector on the rear of the converter chassis.

3.5 Converter IDU Modules Management

The LBC-4000 comes preassembled as ordered for the specific customer application. In the event removal or replacement of the Up or Down Converter IDU Modules is required, complete instructions are provided in **Appendix A. UP/DOWN CONVERTER IDU MODULE REMOVAL/RE-INSTALLATION.**
Chapter 4. REAR PANEL CONNECTORS

4.1 Overview – Cabling Connection Types

Comtech EF Data’s LBC-4000 L-Band Up/Down Converter System uses a number of different cables. Each cable type is typically dedicated to a specific mode of operation.

1) Not all of these operational interface types may be available.
2) The European EMC Directive (EN55022, EN50082-1) requires using properly shielded cables for DATA I/O. These cables must be double-shielded from end-to-end, ensuring a continuous ground shield.
4.1.1 Coaxial Cable Connections

The types of coaxial cables used by Comtech EF Data are ‘BNC’, ‘TNC’, ‘N’, ‘F’, and ‘SMA’. Coaxial cables (plugs) and their mating connectors (jacks/sockets) are available in two coupling styles – Bayonet or Threaded:

Bayonet Coupling Style – The jack has a pair of guideposts that accommodate the plug’s lockdown slots. This lockdown design provides secure assembly without over-tightening the connection.

Threaded Coupling Style – The jack features external threads. The plug shell features internal threads, and has either a knurled outer surface to permit hand-tightening of the connection, or hex flats to accommodate torqued installation.

Connection Instructions

Bayonet Coupling Connections – Use the plug slots to guide, and then slide the plug onto the jack posts. Then, turn the plug clockwise until the jack posts are fully seated within the plug slot.

Threaded Coupling Connections – Engage the plug onto the jack threads, and then turn the plug clockwise until it is fully threaded onto the jack. Do not overtighten the connection.
4.1.1.1 ‘BNC’

BNC plugs and jacks feature a Bayonet Coupling design.

4.1.1.2 ‘TNC’

TNC plugs and jacks feature a Threaded Coupling design similar to Type ‘N’, Type ‘F’ and Type ‘SMA’ connectors.

4.1.1.3 Type ‘N’

Type ‘N’ connectors feature a Threaded Coupling design similar to Type ‘TNC’, Type ‘F’, and Type ‘SMA’ connectors.

4.1.1.4 Type ‘F’

Type ‘F’ connectors feature a Threaded Coupling design similar to Type ‘TNC’, Type ‘N’, and Type ‘SMA’ connectors.

4.1.1.5 Type ‘SMA’

Type ‘SMA’ connectors feature a Threaded Coupling design similar to Type ‘TNC’, Type ‘N’, and Type ‘F’ connectors.
4.1.2 D-Subminiature Cable Connections

D-Subminiature connectors are also called Type ‘D’ or ‘D-Sub’ connectors. The cable plug and chassis receptacle each feature a D-shaped profile that interlock to ensure proper pin orientation and connector seating. The connector pair features multiple rows of pins (male side) coupled to mating sockets (female side).

Whether the gender is male or female, the cable plug features two jack screws for secure connection to the jack nuts provided on the mating chassis receptacle.

Connection Instructions

Orient the plug to the receptacle in the proper position. Press firmly into place. Hand tighten, or use a standard flat-blade screwdriver, to secure the plug jack screws to the receptacle jack nuts. Do not over-tighten.

About connector pinout tables: Figure 4-2 identifies the Pin 1 location for either gender connector.

4.1.3 RJ-45, RJ-48 Cable Connections

Figure 4-3. RJ-45/RJ-48 Connector Example
The plug for an RJ-45 or RJ-48 cable features a flexible tab. The RJ-45 or RJ-48 receptacle features a mating slot. This design configuration ensures a secure installation.

Connection Instructions

As shown in Figure 4-3 – Press down the tab on the cable plug and then insert the plug into the receptacle. The connection is complete when the tab ‘clicks’ into position inside the receptacle.

4.1.4 USB Cable Connections

![USB Cable Connections](image)

(TOP) Type ‘A’ USB Plug and Receptacle
(BOTTOM) Type ‘B’ USB Plug and Receptacle

Figure 4-4. USB Connector Examples

Universal Serial Bus connectors are also called USB connectors. A USB connection is used as a bus-type communications or power interface between peripheral devices. The connector pair (Figure 4-4) features a plug (male side) coupled to its mating receptacle (female side).

Connection Instructions

Type ‘A’ Connections – Slide the plug firmly into the chassis receptacle.

Type ‘B’ Connections – Orient the plug to the receptacle and push in firmly. The Type ‘B’ cable plug and chassis receptacle each feature a D-shaped profile that interlock to ensure proper orientation and connector seating. By design, it is impossible to incorrectly insert the plug into the receptacle.
4.2 Unit Connectors

External cables are attached to connectors provided on the rear panel of the unit (Figure 4-5).

Figure 4-5. LBC-4000 Rear Panel – Current Ethernet-ready Chassis with Optional Redundancy

The LBC-4000 chassis, as initially released (Figure 4-6), does not provide a ‘10/100 ETHERNET’ Management Utility RJ-45 port. Ethernet interface operation is not available on these legacy products.

Figure 4-6. LBC-4000 Rear Panel – Original Serial-only Chassis with Optional Redundancy

4.2.1 Operational Connections

See Sect. 4.2.2 for information about the Power and Ground Connections. From left to right (Figure 4-5):

Item 1 – ‘J2 | EXT REF IN’ Utility Connector
Use this female BNC connector to supply a master reference to the entire chassis. The user-supplied input signal is used for phase-locking the internal 10MHz reference oscillator to a user-provided 5 or 10 MHz station clock.

Item 2 – ‘J4 | RF OUT/IN’ (part of IDU Up / Down Converter Module)
Use this Type ‘N’ female connector as either the ‘CONV B’ L-Band output signal interface (with the Down Converter IDU installed) or the L-Band input signal interface (with the Up Converter IDU installed).
Item 3 – ‘J5 | IF IN/OUT’ (part of IDU Up / Down Converter Module)
Use this ‘BNC’ female connector as either the ‘CONV B’ downconverted IF input signal (with the Down Converter IDU installed), or the upconverted IF output signal (with the Up Converter IDU installed).

Item 4 – ‘10/100 ETHERNET’ Management Utility Port

This connector is available only on current production versions of the LBC-4000 Up/Down Converter System.

Use this 100BaseTX Ethernet RJ-45 port for operation of the Ethernet remote control interfaces. It is also used for updating LBC-4000 firmware. This receptacle uses a CAT5 Ethernet cable for connection to an Ethernet hub, router, switch, PC, etc.

Table 4-1. ‘10/100 ETHERNET’ M&C Interface Connector Pinout

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Description</th>
<th>Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tx+</td>
<td>Out</td>
</tr>
<tr>
<td>2</td>
<td>Tx-</td>
<td>Out</td>
</tr>
<tr>
<td>3</td>
<td>Rx+</td>
<td>In</td>
</tr>
<tr>
<td>4</td>
<td>N/A</td>
<td>--</td>
</tr>
<tr>
<td>5</td>
<td>N/A</td>
<td>--</td>
</tr>
<tr>
<td>6</td>
<td>Rx-</td>
<td>In</td>
</tr>
</tbody>
</table>

Item 5 – Optional IF Connector Group
These ‘BNC’ female ‘IF Primary A / Secondary B’ connector pairs provide the IF “baseball” switch for optional redundant operations.

Item 6 – Optional RF Connector Group
These Type ‘SMA’ female ‘RF Primary A / Secondary B’ connector pairs provide the RF “baseball” switch for optional redundant operations.

See Appendix B. REDUNDANCY OPERATION for details about use of the optional IF and RF Connector Groups (Item 5 and Item 6).

Item 8 – ‘J6 | RF OUT/IN’ (part of IDU Up / Down Converter Module)
Use this Type ‘N’ female connector as either the ‘CONV A’ L-Band output signal interface (with the Down Converter IDU installed) or the L-Band input signal interface (with the Up Converter IDU installed).
Item 9 – ‘J7 | IF IN/OUT’ (part of IDU Up / Down Converter Module)
Use this 'BNC' female connector as either the ‘CONV A’ downconverted IF input signal (with the Down Converter IDU installed), or the upconverted IF output signal (with the Up Converter IDU installed).

Item 10 – ‘P1 | RELAY’ Utility Connector
Use this D-Sub 9-pin female (DB-9F) connector to access the Form C Alarms (relay closures). The mating connector is a DB-9M connector.

Table 4-2. ‘P1 | RELAY’ Pinout

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Summary Fault NC</td>
<td>1) Pin 1 to Pin 6: FAULT</td>
</tr>
<tr>
<td>2</td>
<td>Summary Fault NO</td>
<td>2) Pin 2 to Pin 6 OK (NO FAULT)</td>
</tr>
<tr>
<td>3 & 4</td>
<td>–</td>
<td>3) Pin 7 to Pin 5: Forced Faults (typically used with external group delay equalizers)</td>
</tr>
<tr>
<td>5</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Summary Fault COM</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>EXTFLT_IN#</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>–</td>
<td></td>
</tr>
</tbody>
</table>

Item 11 – ‘J1 | COM1’ Serial Management Utility Connector
Use this D-Sub 9-pin female (DB-9F) EIA-232/EIA-485 connector for Serial Interface operation. The mating connector is a DB-9M connector. See Table 4-3 for the EIA-485 2-Wire pinout specification; Table 4-4 for the EIA-485 4-Wire pinout; and Table 4-5 for the EIA-232C pinout.

Table 4-3. ‘J1 | COM1’ 2-Wire EIA-485 Pinout

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND; Ground</td>
</tr>
<tr>
<td>2</td>
<td>–</td>
</tr>
<tr>
<td>3</td>
<td>–</td>
</tr>
<tr>
<td>4</td>
<td>+Rx/Tx; Signal</td>
</tr>
<tr>
<td>5</td>
<td>-Rx/Tx; Signal Complement</td>
</tr>
<tr>
<td>6</td>
<td>–</td>
</tr>
<tr>
<td>7</td>
<td>–</td>
</tr>
<tr>
<td>8</td>
<td>+Rx/Tx; Signal</td>
</tr>
<tr>
<td>9</td>
<td>-Rx/Tx; Signal Complement</td>
</tr>
</tbody>
</table>

Table 4-4. ‘J1 | COM1’ 4-Wire EIA-485 Pinout

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND; Ground</td>
</tr>
<tr>
<td>2</td>
<td>–</td>
</tr>
<tr>
<td>3</td>
<td>–</td>
</tr>
<tr>
<td>4</td>
<td>+Tx; Signal</td>
</tr>
<tr>
<td>5</td>
<td>-Tx; Signal Complement</td>
</tr>
<tr>
<td>6</td>
<td>–</td>
</tr>
<tr>
<td>7</td>
<td>–</td>
</tr>
<tr>
<td>8</td>
<td>+Rx; Signal</td>
</tr>
<tr>
<td>9</td>
<td>-Rx; Signal Complement</td>
</tr>
</tbody>
</table>
Table 4-5. ‘J1 | COM1’ EIA-232C Pinout

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>–</td>
</tr>
<tr>
<td>2</td>
<td>TD; Transmit Data</td>
</tr>
<tr>
<td>3</td>
<td>RD; Receive Data</td>
</tr>
<tr>
<td>4</td>
<td>–</td>
</tr>
<tr>
<td>5</td>
<td>GND; Ground</td>
</tr>
<tr>
<td>6</td>
<td>–</td>
</tr>
<tr>
<td>7</td>
<td>–</td>
</tr>
<tr>
<td>8</td>
<td>–</td>
</tr>
<tr>
<td>9</td>
<td>–</td>
</tr>
</tbody>
</table>

4.2.2 Power and Ground Connections

4.2.2.1 Power Interface Module – Standard AC Unit

![Figure 4-7. Standard AC Power Module](image)

A detachable power cord, provided with the LBC-4000, mates with the AC (Alternating Current) Prime Power receptacle (Item 7 in Figure 4-5 and Figure 4-7) for connection to 90-125VAC or 205-240VAC power sources.
4.2.2.2 AC Operation – Connecting Prime Power

Figure 4-8. Apply AC Power to the Unit

Do these steps to apply AC power to the unit (Figure 4-8):
1. Plug the provided AC power cord female end into the unit.
2. Plug the AC power cord male end into the user-supplied power source.
3. Switch the unit ON if so equipped (see Sect. 4.2.2.6). Otherwise, the unit energizes upon plug-in to the AC power source.

4.2.2.3 Optional -48VDC Filter Input Module

Figure 4-9. Optional -48VDC Filter Input Module with User-Supplied Power Harness
Note the following:

- The DC (Direct Current) Filter Input Module input voltage is -48VDC nominal, -36VDC minimum, -72VDC maximum.
- Power Module Manufacturer: TE Connectivity P/N 6DAF1 (Comtech EF Data P/N 506-0015-002).
- Mating Connector (by User): Molex 03-12-1036.

Table 4-6. DC Input Filter Module Pinouts

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Signal Name</th>
<th>Wire Colors</th>
<th>Wiring Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Negative</td>
<td>Black</td>
<td>-48 VDC 0 VDC</td>
</tr>
<tr>
<td>B</td>
<td>Ground</td>
<td>Green/Yellow</td>
<td>Earth Ground Earth Ground</td>
</tr>
<tr>
<td>C</td>
<td>Positive</td>
<td>Red</td>
<td>0 VDC +48 VDC</td>
</tr>
</tbody>
</table>

4.2.2.4 Optional DC Operation – Connecting Prime Power

WARNING!
DISCONNECT THE DC POWER SUPPLY BEFORE PROCEEDING!

To apply DC power to the LBC-4000, do these steps:

1. Plug the user-supplied DC power harness connector into the DC Input Filter Module. *Number 18 AWG minimum wires are recommended.*
2. Connect the user-supplied DC power harness leads to the user-supplied DC Power source.
3. Switch the unit ON if so equipped (see Sect. 4.2.2.6). Otherwise, the unit energizes upon connection to the DC power source.

4.2.2.5 Chassis Ground Interface

CAUTION
PROPER GROUNDING PROTECTION IS REQUIRED. You must connect the equipment to the protective earth connection at all times. Use this ground stud during installation, configuration, and operation.

The AC power interface provides the safety ground.
4.2.2.6 Applying Power to the LBC-4000

Prior to turning on power to the unit, check to ensure that installation is complete, and verify that the LBC-4000 is connected to the proper prime power source, RF Input, and RF Output.

Switch on the unit and verify the cooling fan is operational, the LED indicators illuminate as expected, and the Vacuum Fluorescent Display is readable.
Chapter 5. FIRMWARE UPDATE

5.1 Firmware Overview

⚠️ Make sure to operate the LBC-4000 with its latest available firmware.

The LBC-4000 L-Band Up/Down Converter System is factory-shipped with its latest version of operating firmware. If you need to update the firmware, you can apply the update to the LBC-4000 without having to remove it from operation. You may directly acquire the download from Comtech EF Data’s web site (www.comtechefdata.com), or receive the archive file by e-mail from Comtech EF Data Product Support.

5.1.1 LBC-4000 Firmware Update Procedure Summary

1. Download the firmware update archive file to a user-supplied PC. The PC must be Microsoft Windows® compatible.
2. Connect a user-supplied Ethernet cable from the User PC to the ‘10/100 ETHERNET’ 100BaseTX RJ-45 port.
3. Connect a user-supplied serial cable from the User PC to the ‘J1 | COM1’ DB-9F port.
4. Extract the firmware update files from the archive download file. You may then use Comtech’s “CReflash” utility. Otherwise, you must use the LBC-4000 Management IP Address to connect the FTP client to an FTP server, and then FTP-transfer the files from the User PC to the LBC-4000.
5.1.2 About Firmware Numbers, File Versions, and Formats

The Comtech EF Data Web site catalogues its firmware update archive files by product type (e.g., router, modem, etc.), the specific model, and optional hardware configurations. The LBC-4000 files are provided under “Home | Support | Software Downloads | Flash & Software Update Files | Converters | LBC-4000.”

The LBC-4000 firmware download hyperlink for the Ethernet-ready (current) production unit is F0020503x_V###.

The LBC-4000 firmware download hyperlink for the original non-Ethernet unit is F9965x_V####.

Note that ‘x’ is the firmware revision letter, and ‘###’ represents the firmware version number (e.g., V125 = Version 1.2.5).

Comtech EF Data provides its archive download files in two compressed formats – *.exe (self-extracting) and *.zip (compressed):

- The self-extracting *.exe file does not require use of a third-party utility program.
- Some firewalls do not allow the download of self-extracting *.exe files. You must instead download the *.zip file, and extract the firmware files from the download with a user-supplied third-party file archiver and compression utility program such as PKZIP for Windows, WinZip, ZipCentral, etc. (PKZIP for DOS is not supported due to file naming conventions). Comtech EF Data does not provide this utility program.

For detailed information on handling archived files, read your utility program’s Help documentation.
5.2 Prepare for the Firmware Download

5.2.1 Required User-supplied Items

You will need a Microsoft Windows-based PC equipped with available serial and Ethernet ports, a compatible Web browser (e.g., Internet Explorer), and a terminal emulator program (e.g., Tera Term or HyperTerminal).

5.2.2 Configure the Terminal Emulator Program

Read your terminal emulator program user guide or HELP feature for operating and configuration instructions.

On the User PC – Open the terminal emulator program, and then configure the program’s serial port communication and terminal display operation:

- Baud Rate = 38400 bps
- Data Bits = 8
- Stop bits = 1
- Parity = NO
- Local Echo = ON
- Port Flow Control = NONE
- Display New Line Rx/Tx = CR

5.2.3 Get the LBC-4000 Management IP Address and Firmware Information

1. On the LBC-4000 – Apply power to the unit. Typical for either the standard AC unit or the optional DC unit, switch the power ON.
2. Use the LBC-4000 front panel to identify your default Management IP Address. You will not be able to access the LBC-4000 HTTP Interface without this information. See Section 5.2.3.1.
3. Get the firmware information using one these methods:
 - To use the LBC-4000 front panel, see Section 5.2.3.1.
 - To use the HTTP (Web Server) Interface, see Section 5.2.3.2.
 - To use the serial remote control, see Section 5.2.3.3.
5.2.3.1 Use the LBC-4000 Front Panel to Get the Management IP Address and Firmware information

Chapter 6. FRONT PANEL OPERATION

Using the unit front panel:

- You may view find the factory-assigned Management IP Address within the CONFIG → REMOTE → ETHERNET → ADDRESS menu branch:

 IP Address/Range:
 XXX.XXX.XXX.XXX/YY

- You may view the current Firmware M&C version at the top-level menu of the front panel display (press the [CLEAR] key several times):

 LBC-4000
 VER X.X.X SN:#########

- You may view the detailed firmware information within the UTILITY → FIRMWARE → INFO → IMAGE#1 or IMAGE#2 → BULK menu branches:

 Image#X: _BULK APP FPGA

 Bulk#X: FW-0020503
 X.X.X. MM/DD/YY

5.2.3.2 Use the HTTP Interface to Find the Firmware Information

Chapter 7. ETHERNET INTERFACE OPERATION

Do these steps:

1. Go to either of these pages to review the firmware information:
 - The ‘Firmware Information’ section of the ‘Config | Utility’ page provides the firmware details as Boot, Bulk1, and Bulk2, as shown in this example:
• The ‘Summary’ section of the ‘Status | Summary’ page provides the firmware details – “FW Revision”, “Active Software Image”, and “Next Reboot Image” – as shown in this example:

<table>
<thead>
<tr>
<th>Summary Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>Boot</td>
</tr>
<tr>
<td>FW Revision</td>
</tr>
<tr>
<td>Active Software Image</td>
</tr>
<tr>
<td>Next Reboot Image</td>
</tr>
<tr>
<td>Redundancy</td>
</tr>
</tbody>
</table>

2. Write down your firmware information for further reference or to provide to Comtech EF Data Product support.

5.2.3.3 Use the Serial Interface to Find the Firmware Information

Chapter 8. SERIAL INTERFACE OPERATION

Use your terminal emulator program to execute remote queries with the LBC-4000. Use the “FRM” or “FRW” remote query to find the pertinent firmware information:

• `<DEV/FRM_{cr}`
 (returns the current (Ethernet-ready) firmwares running under Boot, Bulk1, and Bulk2 in the form FW-AAAAAAA; B.B.B; DD/MM/YY, where:
 o FW-AAAAAAA = the firmware part number
 o B.B.B = the firmware version number
 o MM/DD/YY = the firmware release date (Month/Day/Year)

• `<DEV/FRW_{cr}`
 (returns the legacy (Serial operation only) firmwares in the form:
 o BULK=FW/9965X (where X is the Revision Letter)
 o M&C=FW/9966X (where X is the Revision Letter)
 o FPGA=FW/9967X (where X is the Revision Letter)
5.2.4 Make a Temporary Folder (Subdirectory) on the User PC

The temporary folder is where you store the firmware archive download. There are several ways you can make a temporary folder on a Windows PC:

- To use the Windows Desktop, see Section 5.2.4.1.
- To use Windows Explorer, see Section 5.2.4.2.
- To use the Run and Browse windows, see Section 5.2.4.3.
- To use Windows Command-line or the Command Prompt, see Section 5.2.4.4.

1) These examples specify drive letter “c:”. You can use any valid, writable drive letter.
2) Typical for many of the tasks that follow, type the command as instructed and then press Enter.

After you make the temporary folder, proceed to Section 5.3 to download and extract the firmware files.

5.2.4.1 Use Windows Desktop to Make a Folder

Do these steps:
1. Right-click anywhere on the desktop to open the popup submenu.
2. Select New > Folder to make the new, temporary folder on the desktop.
3. Right-click on the new folder and then select Rename from the popup submenu. Rename this folder to “temp” or some other convenient, unused name.
5.2.4.2 Use Windows Explorer to Make a Folder

Do these steps:
1. Left-double-click the Windows Explorer icon on the Windows Desktop.
2. Depending in your Windows OS version: select File > New > Folder, or click your Folder Destination (e.g., Windows (C:)) and then New Folder to make the new, temporary folder in the active location.
3. Right-click the New Folder folder name, and then Rename this folder to “temp” or some other convenient, unused name.

5.2.4.3 Use the Run and Browse Windows to Make a Folder

Select Start on the Windows taskbar and then do these steps:
1. Click Run... to open the Run window.
2. Click Browse... to open the Browse window.
3. Click New Folder. This can be an icon or a text label, depending on the Windows OS version.
4. Right-click the New Folder folder name, and then Rename this folder to “temp” or some other convenient, unused name.
5.2.4.4 Use Windows Command-line or Command Prompt to Make a Folder

Select Start on the Windows taskbar and then do these steps:

1. Click Run... to open the Run window (or, depending on Windows OS version prior to Windows 95, click the MS-DOS Prompt icon from the Main Menu).

2. Open a Command-line window:
 - For Windows 95 or Windows 98 – type “command”.
 - For any Windows OS versions later than Windows 98 – type “cmd” or “command”.
 - Alternately, from Start, select the All Programs > Accessories popup submenu, and then select Command Prompt:

3. From the c:\> prompt, type either “mkdir temp” or “md temp” (both “mkdir” and “md” mean “make directory”), and then press Enter.

There will now be a “temp” folder created and available for placement of the firmware file download.
5.3 Download and Extract the Firmware Update Files

Do these steps:
2. On the Main page – Under Support Information or the Support tab, select the Software Downloads hyperlink.
3. On the Software Downloads page – Click Download Flash and Software Update Files.
4. On the Flash Updates Index page – Select the (Select a Product Line) Converters hyperlink.
5. On the Converters product page – Select the LBC-4000 product hyperlink.
6. Select the appropriate firmware archive EXE or ZIP file download hyperlink.
7. Once you select the EXE or ZIP hyperlink, the File Download dialogue opens on your browser and prompts an action. You may otherwise click [Cancel] to quit the file download process. Note the following:
 - For EXE files:
 - Click [Run] to open the self-extractor dialogue window. Use [Browse] to select your destination folder. Click [Unzip] to extract the files. Your results display as per this example – click [OK] to close. Your files are now available for transfer to the LBC-4000.
• Click [Save] to download the EXE file to your Downloads folder. Once the download is complete the dialogue prompts you to either [Run] the self-extracting file, or to open or view the Windows Downloads folder for further action.

8. If not already done with File Download > Open, you must extract, at a minimum, these files (filenames are subject to change):
 • FW-0020503x_LBC4000_Ethernet_#.#.#.bin – The Firmware Bulk image file
 • CReflash.exe – The Firmware Update Utility program

 WHERE: ‘x’ is the firmware revision letter, and ‘#-#-#’ is the firmware version (e.g., FW Ver. 1.2.5)

9. Confirm availability of the firmware files in the temporary folder. There are several ways you can view the contents of the temporary folder on a Windows-based PC:
 • To use the Windows Desktop, see Section 5.3.1.1.
To use Windows Command-line or Command Prompt, see Section 5.3.1.2.

After you confirm the firmware files are in the folder, proceed to Section 5.4 to upload the firmware update to the LBC-4000.

5.3.1.1 Use Windows Desktop to View Folder Contents

From the Windows Desktop:
1. Double-left-click the Windows Explorer icon, and then double-left-click as needed to locate, and then open, the “temp” folder (directory) created earlier on the Windows Desktop.
2. Use the Browse window (Start > ...Run > Browse) to locate, and then double-click to open, the “temp” folder.

5.3.1.2 Use Windows Command-line to View Folder Contents

From Command-line or Command Prompt:
1. Type “cd c:\temp” at the Windows Command-line prompt to change to the temporary folder (directory) created earlier using Command-line.
2. Type “dir” to list the files extracted to the temporary folder from the downloaded archive file.

5.4 Upload the Firmware Files and Update the LBC-4000 Unit

5.4.1 Important Considerations

Before you proceed with the firmware update, make sure that:
- You connect the LBC-4000 ‘10/100 ETHERNET’ port to a Windows-based PC Ethernet port with a CAT5e Ethernet cable.
- Your PC is running a terminal emulation program for operation of the LBC-4000 Telnet or serial interfaces.
- You have noted your LBC-4000 Management IP Address.
- Your PC is running a compatible Web browser for operation of the LBC-4000 HTTP Interface.
5.4.2 Steps to “CReflash” Upload the Firmware Files

1) The “CReflash” utility is provided with the firmware download.
2) Serial-only (i.e., non-Ethernet) units must use this procedure.

Do these steps:

1. From the temporary folder – Locate, and then double-click, the “CReflash” filename or icon. The CReflash utility opens:

2. Enter your upload parameters information into CReflash:
 a. Left-click in the “IP Address:” text box, and enter the default Management IP Address.
 b. Left-click in the “Local Filename:” text box. Then, click [Browse] and navigate to the temporary folder created earlier. Click on the firmware “bin” filename, and then click [Open]. The filename will appear in the “Local Filename:” text box.
 c. Make sure the drop-down list remains set to “bulk:”.
 d. Click [Start] to begin the upload process. If the information was correctly entered into CReflash, the utility displays an animated progress bar at the bottom of the window, along with a series of messages:
 • “Opening FTP”
 • “Sending data file to modem:”
 • “Writing FLASH: # of #”
• “Success!”
 3. When done, click [Cancel] to exit CReflash.

5.4.3 Steps to FTP Upload the Firmware Files

1) Typical for all steps: “xxx.xxx.xxx.xxx” represents the assigned unit Management IP Address.
2) Type all commands without quotes, and press Enter to execute.

1. To proceed, you should already have noted the Management IP Address for the LBC-4000 as instructed in Section 5.2.3.1.

2. Use Windows Command-line to send a ping command. To ping the unit, type “ping xxx.xxx.xxx.xxx” at the Windows Command-line prompt. The response should confirm whether the unit is connected and communicating correctly with the User PC.

3. Use Windows Command-line to transfer the files from the User PC to the LBC-4000 unit via FTP:
 a. Type “ftp xxx.xxx.xxx.xxx” to open the FTP session.
 b. Type “bin” to set the binary transfer mode.
 c. Type “prompt”.
 d. Type “hash”.
 e. To begin the file transfer, type
 “put FW-0020503x_LBC4000_ Ethernet_##_#.bin bulk:”

 The destination “bulk:” must be all lower-case.

 Press Enter. The unit reports the update progress (e.g., first “Programming App Flash ... Please wait.” and then “Programming main FPGA ... Please wait.”)
 f. Wait for the file transfer to end.
 g. Type “bye” to close the FTP session.
 h. Close the Windows Command-line window.

4. To verify that the PC-to-unit FTP file transfer was successful, find the current firmware information via the front panel or the HTTP or Serial Interface (see Sections 5.2.3.1, 5.2.3.2, or 5.2.3.3).
5.4.4 Steps to Complete the Firmware Update Procedure

- Chapter 6. FRONT PANEL OPERATION
- Chapter 7. ETHERNET INTERFACE OPERATION

Use the LBC-4000 front panel or the HTTP Interface to select the new firmware image. You must then reboot the unit for the update to take effect.

5.4.4.1 Select the Boot Image

5.4.4.1.1 Use the Front Panel to Select the Boot Image

Do these steps from the LBC-4000 front panel:
1. Go to the UTILITY ➔ FIRMWARE ➔ SELECT menu branch.

 ![Current Active Image: #2
 Next Reboot Image: #1 #2]

2. On the bottom line, use the ◀ ▶ arrow keys to change to the other image.

 ![You must be in LOCAL MODE to perform this task. If you are not in Local Mode (via the CONFIG ➔ REMOTE menu branch), the unit will prompt you to take an action before continuing:
 Remote Mode: press ENTER
 For local mode, or CLEAR]

3. You must cycle power to hard-reboot the unit.

5.4.4.1.2 Use the HTTP Interface to Select the Boot Image

Do these steps from the HTTP Interface ‘Config | Utility’ page:
1. Use the ‘Next Reboot Image’ drop-down list to select Image 1 or 2 as the preferred Current Active Firmware Image:

 ![Current Active Firmware Image: #1 Next Reboot Image: #2 Submit]

2. Click [Submit].
3. Hard-reboot or soft-reboot the unit.
5.4.4.2 Reboot the Unit

5.4.4.2.1 Hard-reboot the Unit from the Rear Panel

Typical for either the standard AC unit or the optional DC unit:

1. From the unit rear panel, switch the power OFF, and then turn the power back ON.
2. Verify the new firmware version has booted; for example, check the firmware version displayed on the LBC-4000 front panel:

```
LBC-4000
VER X.X.X    SN:#########
```

5.4.4.2.2 Soft-reboot the Unit from the HTTP Interface

Do these steps from the HTTP Interface ‘Config | Utility’ page:

1. In the ‘Perform Soft Reboot’ section, click [Reboot Now]:

```
Perform Soft Reboot   Reboot Now
```

2. Wait while the LBC-4000 reboots with the Current Active Firmware Image.
3. To load a second image, repeat the tasks described throughout Section 5.4.4.

The LBC-4000 is now operating with its latest firmware. The firmware update process is complete.
Chapter 6. FRONT PANEL OPERATION

6.1 Front Panel Overview

You may fully control and monitor the LBC-4000 L-Band Up/Down Converter System from the front panel (Figure 6-1).

6.1.1 Power Up the LBC-4000

For units as equipped, a prime power switch is mounted behind the front panel. To access the switch, loosen the three front panel thumb screws, slide the front panel out from the chassis, and then drop down the panel.
Before turning on power to the unit, check to make sure that installation is complete, and verify that the LBC-4000 is connected to the proper prime power source, RF Input, and RF Output.

Switch on the unit and verify the cooling fan is operational, the LED indicators illuminate as expected, and the Vacuum Fluorescent Display is readable.

6.1.2 LED Indicators

See Figure 6-1 (Item 1) and Figure 6-3. These two groups of five LED Indicators – one set each for CONV A and CONV B – convey operational states as follows:

SUM FAULT
Lights RED when a fault condition has been logged and stored.

MUTE
Lights AMBER when the unit is in Mute Mode.

ONLINE
Lights GREEN when the unit is online and carrying traffic.

UP
Lights GREEN when the module is operating as an UP CONVERTER.

DOWN
Lights GREEN when the module is operating as a DOWN CONVERTER.
6.1.3 Vacuum Fluorescent Display (VFD)

See Figure 6-1, Item 2. The VFD is an active display showing two lines of 24 characters each. It produces a blue light with adjustable brightness. On most menu screens, you will see a flashing, solid-block cursor that blinks at a once-per-second rate. This indicates the currently selected item, digit, or field:

Where this solid block cursor obscures the item under edit (e.g., a numeric field), the cursor automatically changes to an underline cursor:

To prevent the display from becoming burnt by a constant image, the unit employs a screen saver feature that activates after a preset amount of time, or a default of one hour. This message constantly scrolls and wraps across the screen. The top line displays the AID (the user-defined name for the unit); the bottom line displays the message “Press any key...” as shown:

Press any key to restore the previously active screen.
6.1.4 Keypad

See Figure 6-1, Item 3. The keys for the current production unit keypad have a positive ‘click’ action that provides tactile feedback. Enter data via the keypad. Data, prompts, and messages are displayed on the VFD. Operation of the individual keys is as follows:

- Use the [ENT] (ENTER) key to select a displayed function or to execute a unit configuration change.
- Use the [CLR] (CLEAR) key to back out of a selection or to cancel a configuration change that has not been executed using [ENT]. Pressing [CLR] generally returns the display to the previous selection.
- Use the [] (LEFT) and [] (RIGHT) keys to move to the next selection or to move the cursor functions. At times, they may also be used to move from one section to another.
- Use the [] (UP) and [] (DOWN) keys to change configuration data (numbers). You may also use these keys to move from one section to another.

The keypad has an auto-repeat feature. If a key is held down for more than 1 second, the key action will repeat, automatically, at the rate of 15 keystrokes per second. This is particularly useful when editing numeric fields, with many digits, such as the IP Address assignments.
6.2 Front Panel Operation – Menu Matrix

<table>
<thead>
<tr>
<th>Chapter Sect.</th>
<th>Menu Screen Description</th>
<th>Submenu Selections</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>Opening Screen</td>
<td></td>
</tr>
<tr>
<td>6.2.2</td>
<td>Select (Main) Menu</td>
<td>CONFIG; MONITOR; FAULTS; UTILITY</td>
</tr>
<tr>
<td>6.2.3</td>
<td>CONFIG (Configuration)</td>
<td>CONV-A; CONV-B; REMOTE; REDUND; REFADJ; SPECT-INV</td>
</tr>
<tr>
<td>6.2.3.1</td>
<td>(CONFIG:) CONV-A / CONV-B</td>
<td>FREQ/MUTE; ATTEN/SLOPE</td>
</tr>
<tr>
<td>6.2.3.1.1</td>
<td>(CONFIG:) CONV-X FREQ/MUTE</td>
<td>–</td>
</tr>
<tr>
<td>6.2.3.1.2</td>
<td>(CONFIG:) CONV-X ATTEN/SLOPE</td>
<td>–</td>
</tr>
<tr>
<td>6.2.3.2</td>
<td>(CONFIG:) REMOTE</td>
<td>Local; Serial; Ethernet</td>
</tr>
<tr>
<td>6.2.3.2.1</td>
<td>(REMOTE:) LOCAL</td>
<td>–</td>
</tr>
<tr>
<td>6.2.3.2.2</td>
<td>(REMOTE:) SERIAL</td>
<td>Serial Mode; Address; Baudrate</td>
</tr>
<tr>
<td>6.2.3.2.3</td>
<td>(REMOTE:) ETHERNET</td>
<td>ADDRESS; GATEWAY; SNMP</td>
</tr>
<tr>
<td>6.2.3.2.3.1</td>
<td>(REMOTE:) ETHERNET ADDRESS</td>
<td>–</td>
</tr>
<tr>
<td>6.2.3.2.3.2</td>
<td>(REMOTE:) ETHERNET GATEWAY</td>
<td>–</td>
</tr>
<tr>
<td>6.2.3.2.3.3</td>
<td>(REMOTE:) ETHERNET SNMP</td>
<td>COMMUNITIES; TRAPS</td>
</tr>
<tr>
<td>6.2.3.3</td>
<td>(CONFIG:) REDUND(ANCY)</td>
<td>MODE; STATE; FrcBkup</td>
</tr>
<tr>
<td>6.2.3.4</td>
<td>(CONFIG:) REFADJ</td>
<td>–</td>
</tr>
<tr>
<td>6.2.3.5</td>
<td>(CONFIG:) SPECT-INV</td>
<td>ConvA; ConvB</td>
</tr>
<tr>
<td>6.2.4</td>
<td>MONITOR</td>
<td>ConvA; ConvB; RefOsc; PS-A; PS-B</td>
</tr>
<tr>
<td>6.2.5</td>
<td>FAULTS</td>
<td>CURRENT; STORED</td>
</tr>
<tr>
<td>6.2.5.1</td>
<td>(FAULTS:) CURRENT</td>
<td>ConvA; ConvB; PS-A; PS-B; ExtRef</td>
</tr>
<tr>
<td>6.2.5.2</td>
<td>(FAULTS:) STORED</td>
<td>VIEW; CLEAR-ALL</td>
</tr>
<tr>
<td>6.2.5.2.1</td>
<td>(FAULTS:) STORED VIEW</td>
<td>–</td>
</tr>
<tr>
<td>6.2.5.2.2</td>
<td>(FAULTS:) STORED CLEAR-ALL</td>
<td>–</td>
</tr>
<tr>
<td>6.2.6</td>
<td>UTILITY</td>
<td>TIME; DISP; FIRMWARE; AID; LAMPTEST; RELAY; SC RSAVER</td>
</tr>
<tr>
<td>6.2.6.1</td>
<td>(UTILITY:) TIME</td>
<td>Time (HH:MM:SS); Date (MM/DD/YY)</td>
</tr>
<tr>
<td>6.2.6.2</td>
<td>(UTILITY:) DISP</td>
<td>25%/50%/75%/100%</td>
</tr>
<tr>
<td>6.2.6.3</td>
<td>(UTILITY:) FIRMWARE</td>
<td>INFO; SELECT</td>
</tr>
<tr>
<td>6.2.6.3.1</td>
<td>(FIRMWARE:) INFO</td>
<td>BOOTROM; IMAGE#1; IMAGE#2</td>
</tr>
<tr>
<td>6.2.6.3.1.1</td>
<td>(FIRMWARE:) INFO BOO TROM</td>
<td>–</td>
</tr>
<tr>
<td>6.2.6.3.1.2</td>
<td>(FIRMWARE:) INFO IMAGE#1/#2</td>
<td>BULK; APP; FPGA</td>
</tr>
<tr>
<td>6.2.6.3.2</td>
<td>(FIRMWARE:) SELECT</td>
<td>(IMAGE) #1/#2</td>
</tr>
<tr>
<td>6.2.6.4</td>
<td>(UTILITY:) AID</td>
<td>(Application ID Message)</td>
</tr>
<tr>
<td>6.2.6.5</td>
<td>(UTILITY:) LAMPTEST</td>
<td>No/Yes</td>
</tr>
<tr>
<td>6.2.6.6</td>
<td>(UTILITY:) RELAY</td>
<td>Normal/Invert</td>
</tr>
<tr>
<td>6.2.6.7</td>
<td>(UTILITY:) SC RSAVER</td>
<td>Theme; Time</td>
</tr>
<tr>
<td>6.2.6.7.1</td>
<td>(UTILITY:) SCRSAVER THEME</td>
<td>Classic; Zip-ped; Cycling; B-Board; S-Wiper</td>
</tr>
<tr>
<td>6.2.6.7.2</td>
<td>(UTILITY:) SCRSAVER TIME</td>
<td>OFF-999</td>
</tr>
</tbody>
</table>
6.2.1 Opening Screen

The opening screen displays once you apply power to the unit. The top line identifies the unit model (e.g., LBC-4000). The bottom line displays the running Firmware Version (this number may vary) and the unit serial number.

Press [ENT] to display the Main Menu. Press [CLR] from any nested screen to alternate between this top-level screen and the user-defined AID screen.

6.2.2 Main Menu

Use the [←][→] keys to move the cursor to the desired choice. Press [ENT]. The function of each menu branch is as follows:

- **CONFIG (Configuration) Menu Branch** – These screens provide selections for the full LBC-4000 operations.
- **MONITOR Menu Branch** – These screens provide real-time monitoring of system voltages, unit temperature, IFLO tuning, and reference oscillator tuning.
- **FAULTS Menu Branch** – The converter displays up to 100 faults, date and time stamped and stored in memory as they occur.
- **UTILITY Menu Branch** – These screens permit you to configure such system functions as the Real-Time Clock, VFD brightness, unit AID, screen saver theme, and the firmware image loading preferences.

6.2.3 (SELECT:) CONFIG (Configuration) Menu Branch

- **CONV-A**
- **CONV-B**
- **REMOTE**
- **REDUND**
- **REFADJ**
- **SPECT-INV**
Use the [][] keys to move the cursor to the desired choice. Press [ENT]. The function of each CONFIG submenu is as follows:

- **CONV-A, CONV-B** Submenus – Displays the current configuration of the selected converter, including the frequency, attenuation, and slope.
- **REMOTE** Submenu – The selections here allow you to select whether you control the unit locally or remotely, set the unit address, the interface type, and the operating parameters for that interface.
- **REDUND** Submenu – The selections here allow you to identify the redundancy state and mode (see Appendix B. REDUNDANCY OPERATION for detailed information about redundancy operations).
- **REFADJ** Submenu – This screen allows you to adjust the reference oscillator.
- **SPECT-INV** Submenu – The selections here allow you to set the Converter A and Converter B spectral inversion to INVERTED or NORMAL.

6.2.3.1 (CONFIG:) CONV-A or CONV-B (Converter Unit A or Unit B)

CONFIG CnvX: (IF=YYYMHz)

<table>
<thead>
<tr>
<th>FREQ/MUTE</th>
<th>ATTN/SLOPE</th>
</tr>
</thead>
</table>

Where ‘X’ is the selected converter – CnvA (Converter Unit A) or CnvB (Converter Unit B) – and ‘YYY’ indicates its operating frequency (70 or 140 MHz), use the [][] arrow keys to select FREQ/MUTE or ATTN/SLOPE. Press [ENT].

6.2.3.1.1 (CONFIG:) CnvA or CnvB → FREQ/MUTE

CONFIG CnvX:

| CMM=ON | Frq=01980.000MHz | Rx=ON |

Select the CMM (Configuration Mute Mode): Use the [][] arrow keys on the top line to select CMM. Use the [⬆][⬇] arrow keys to select ON or OFF.

Set the operating frequency: Use the [][] arrow keys on the bottom line to select a digit to edit, and then use the [⬆][⬇] arrow keys to
change its value. Repeat for all digits until you define the desired frequency.

Select the Tx/Rx mute status: Use the [←][→] arrow keys on the bottom line to select the parameter. Use the [↑][↓] arrow keys to select **ON** or **OFF**.

The displays reads ‘Tx’ when the installed module is an Up Converter, or ‘Rx’ when the installed module is a Down Converter.

Press [ENT].

6.2.3.1.2 CONFIG CnvA or CnvB → ATTEN/SLOPE

For **CnvA**:

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CnvA: Ofst=+0.0dB</td>
<td></td>
</tr>
<tr>
<td>Atten=00.00dB</td>
<td></td>
</tr>
<tr>
<td>Slope=0.0</td>
<td></td>
</tr>
</tbody>
</table>

For **CnvB**:

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CnvB:</td>
<td></td>
</tr>
<tr>
<td>Atten=00.00dB</td>
<td></td>
</tr>
<tr>
<td>Slope=0.0</td>
<td></td>
</tr>
</tbody>
</table>

Typical for either, use the [←][→] arrow keys to select **Attenuation** or **Slope**.

Set the attenuation: Use the [←][→] arrow keys to select a digit to edit, and then use the [↑][↓] arrow keys to change its value.

Set the slope value: Use the [↑][↓] arrow keys to select, in 0.1 increments, a value between 0.0 and 1.0.

For the CONFIG: Conv-A → ATTEN/SLOPE menu, the **Ofst** (Gain Offset) command is available only if redundancy is enabled. See Appendix B. REDUNDANCY OPERATION for further details on using this command in redundancy applications.

Press [ENT].
6.2.3.2 (CONFIG:) REMOTE (Remote Control) Submenu

Use the [←][→] arrow keys to select Local, SERIAL, or ETHERNET. Press [ENT].

6.2.3.2.1 (REMOTE:) Local

1) When you select Local mode, remote monitoring is possible, but remote control is disabled.
2) A number of operations are possible in Local mode only. If you are in Serial or Ethernet mode during such tasks, the unit alerts you to this remote state:

Press [ENT] to switch to Local Mode to continue with your task, or press [CLR] to exit the task and remain in the active mode.

6.2.3.2.2 (REMOTE:) SERIAL

On the top line, use the [↑][↓] arrow keys to set the mode to RS-232 or RS-485.

On the bottom line, set the Serial address (Addr). Use the [←][→] arrow keys to select a digit, and then the [↑][↓] arrow keys to change its value. The valid range of addresses is from 001 (default) to 255.

Next, set the Baud rate. Use the [←][→] arrow keys to select the parameter, and then the [↑][↓] arrow keys to select the desired baud rate of 1200, 2400, 4800, 9600 (default), 19K2, and 38K4.
Finally, set the asynchronous character format. Use the \(\uparrow\uparrow\downarrow\downarrow\) arrow keys to select the parameter, and then the \(\uparrow\downarrow\) arrow keys to select the desired format (i.e., number of data bits; odd, even, or no parity; number of stop bits) as 8-N-1, 7-E-2, or 7-O-2.

Press [ENT].

6.2.3.2.3 (REMOTE:) ETHERNET

The LBC-4000 L-Band Up/Down Converter System, as initially released, does not feature a rear panel ‘10/100 ETHERNET’ port. Only current production units offer Ethernet Interface operation. See Chapter 4. REAR PANEL CONNECTORS for more information.

<table>
<thead>
<tr>
<th>ADDRESS GATEWAY SNMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC = 00-06-B0-00-00-OF</td>
</tr>
</tbody>
</table>

On the top line, use the \(\uparrow\uparrow\downarrow\downarrow\) arrow keys to select ADDRESS, GATEWAY, or SNMP. (The bottom line displays the read-only unit MAC address.) Press [ENT].

6.2.3.2.3.1 (REMOTE:) ETHERNET \(\Rightarrow\) ADDRESS

<table>
<thead>
<tr>
<th>IP Address/Range:</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.001.002/24</td>
</tr>
</tbody>
</table>

Edit the Management IP Address and Range for the rear panel ‘10/100 ETHERNET’ port. Use the \(\uparrow\uparrow\downarrow\downarrow\) arrow keys to select a digit, and then the \(\uparrow\downarrow\) arrow keys to change its value. Press [ENT].

6.2.3.2.3.2 (REMOTE:) ETHERNET \(\Rightarrow\) GATEWAY

<table>
<thead>
<tr>
<th>Ethernet IP Gateway:</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.001.002</td>
</tr>
</tbody>
</table>

Edit the IP Gateway Address for the rear panel ‘10/100 ETHERNET’ port. Use the \(\uparrow\uparrow\downarrow\downarrow\) arrow keys to select a digit, and then the \(\uparrow\downarrow\) arrow keys to change its value. Press [ENT].
6.2.3.2.3.3 (REMOTE:) ETHERNET→SNMP

COMMUNITIES TRAPS

Use the [◀][▶] arrow keys to select COMMUNITIES or TRAPS. Press [ENT].

(REMOTE:) ETHERNET→SNMP→COMMUNITIES

SNMP Communities:
READ WRITE TRAP

Use the [◀][▶] arrow keys to select READ, WRITE, or TRAP. Press [ENT].

(REMOTE:) ETHERNET→SNMP→COMMUNITIES→READ

Read Community:
public

View or edit the SNMP Read Community string. Use the [◀][▶] arrow keys to select a character, and then the [↑][↓] arrow keys to edit that character. Press [ENT].

(REMOTE:) ETHERNET→SNMP→COMMUNITIES→WRITE

Write Community:
private

View or edit the SNMP Write Community string. Use the [◀][▶] arrow keys to select a character, and then the [↑][↓] arrow keys to edit that character. Press [ENT].

(REMOTE:) ETHERNET→SNMP→COMMUNITIES→TRAP

Trap Community:
comtech
View or edit the SNMP Trap Community string. Use the [↩][↑] arrow keys to select a character, and then the [↑][↓] arrow keys to edit that character. Press [ENT].

(REMOTE:) ETHERNET → SNMP → TRAPS

Use the [↩][↑] arrow to select TRAP1, TRAP2, or VERSION. Press [ENT].

(REMOTE:) ETHERNET → SNMP → TRAPS → TRAP1/TRAP2

If both Trap IP Addresses are set to 000.000.000.000, it means that Traps are disabled.

TRAP IP ADDRESS #1:
000.000.000.000

TRAP IP ADDRESS #2:
000.000.000.000

Typical for both submenus: View or edit the Trap Destination IP Address. Use the [↩][↑] arrow keys to select a digit, and then the [↑][↓] arrow keys to change its value. Press [ENT].

(REMOTE:) ETHERNET → SNMP → TRAPS → VERSION

Trap Version:
SNMPv1 SNMPv2

Use the [↑][↓] arrow keys to set the trap version as SNMPv1 or SNMPv2. Press [ENT].
6.2.3.3 (CONFIG:) REDUND (Redundancy) Submenu

See Appendix B. REDUNDANCY OPERATION for detailed information about using the front panel menus for redundancy configuration and operation.

This menu branch is functional in LOCAL MODE ONLY.

<table>
<thead>
<tr>
<th>Redundancy:</th>
<th>Mode</th>
<th>State</th>
<th>FrcBkup</th>
</tr>
</thead>
</table>

6.2.3.4 CONFIG: REFADJ (Reference Oscillator Adjustment)

Reference frequency
Adjustment = 087

The reference oscillator adjustment may be manipulated with this menu. Use the [ARROW] arrow keys to select a digit to edit, and then the [ARROW] arrow keys to change its value. Press [ENT] when done.

The default Reference Frequency tuning adjustment is 087, with allowable values from 000 to 255.

When an external reference oscillator is connected and set to 10 MHz, the following screen appears:

EXTERNAL 10 MHZ
REFERENCE PRESENT

When an external reference oscillator is connected and set to 5 MHz, the following screen appears:

EXTERNAL 5 MHZ
REFERENCE PRESENT
When an external reference oscillator is connected and set to other than 5 MHz or 10 MHz, the following screen appears:

```
EXTERNAL REFERENCE FREQ
MUST BE 5/10 MHz
```

6.2.3.5 CONFIG: SPECT-INV (Spectrum Inversion)

Spectrum Inversion:

ConvA=NRM ConvB=INV

To set Spectrum Inversion operation: Use the [◀][▶] arrow keys to select ConvA or ConvB, and then use the [◀][▶] arrow keys to toggle the parameter as NRM (Normal) or INV (Invert). Press [ENT] when done.

6.2.4 (SELECT:) MONITOR Menu Branch

These examples are provided for reference only – the data that displays on your system will vary depending on your actual operating conditions. Five read-only information screens provide monitoring of a number of operating voltage, temperature and tuning parameters. Use the [◀][▶] arrow keys to page between screens.

Monitor A:

- iflo=08.2
- rflo=01.6
- tp=+32.1

Monitor B:

- iflo=08.1
- rflo=01.6
- tp=+30.2

These screens show the active Monitor A (Conv-A) and Monitor B (Conv-B) Up and/or Down Converter IDU operating parameters, where:

- **iflo** = IF Lockout
- **rflo** = RF Lockout
- **tp** = Operating Temp (°C)
This screen displays raw voltage of the **Ref Osc** voltage tuning monitor. Use this screen for debugging purposes only.

![MON Ref Osc: Vtune=04.7](image)

These screens display show the **PS A** and **PS B** (power supply) 12V, 8V, and 5V values.

Press [ENT] or [CLR] to continue.

6.2.5 (SELECT:) FAULTS Menu Branch

![CURRENT STORED](image)

Use the [◀][▶] arrow keys to select **CURRENT** or **STORED**. Press [ENT].

6.2.5.1 (FAULTS:) CURRENT

⚠️ These examples are provided for reference only – the data that displays on your system will vary depending on your actual operating conditions. Five *read-only* information screens provide fault monitoring for a number of operating parameters. The system reports the status as **OK** (operating within normal ranges), or **FT** (currently faulted). Use the [◀][▶] arrow keys to page between screens.
These screens show the active Conv-A and Conv-B Up and/or Down Converter IDU operating parameters fault states, where:

- iflo = IF Lockout Fault
- rflo = RF Lockout Fault
- temp = Operating Temp Fault (°C)

These screens show the active PS A and PS B (power supply) 12V, 8V, and 5V fault states.

This screen displays the external reference oscillator fault state.

Press [ENT] or [CLR] to continue.

6.2.5.2 (FAULTS:) STORED

Use the [◄][►] arrow keys to select VIEW or CLEAR-ALL. Press [ENT].
6.2.5.2.1 (FAULTS:) STORED → VIEW

If you select View and no faults exist in the stored faults log, the system displays this message:

No Stored Faults.

Otherwise, stored faults log entries display as per this example:

Fault No. 06 10:28:53 ▲
OK-IFLO_A 08/10/16 ▼

Use the [↑][↓] arrow keys to page between screens. The faults log can store up to 100 faults. When a fault condition occurs, the unit assigns a number to the fault (in the order received), date- and time-stamps the fault, and provides a condensed description of the issue. When the fault condition clears, this action is recorded in the same fashion as the fault was originally recorded.

Once the number of faults reaches 100, the 100th fault displays as “ER.” The stored faults remain in memory until you execute the CLEAR-ALL command.

Press [ENT] or [CLR] to return to the previous menu.

6.2.5.2.2 (FAULTS:) STORED → CLEAR-ALL

Use the [←][→] arrow keys to select No or Yes. Press [ENT].

When you select Yes, the unit clears the faults log and returns you to the previous menu. However, if there are faults present on the unit at this time, the unit will re-stamp the faults and generate new log entries.
6.2.6 (SELECT:) UTILITY Menu Branch

Use the [][] arrow keys to move the cursor to the desired choice. Press [ENT]. The function of each UTILITY submenu is as follows:

- TIME Submenu – This allows configuration of the Real-Time Clock.
- DISP Submenu – This allows adjustment of the Video Fluorescent Display (VFD) brightness level.
- FIRMWARE Submenus – This allows you to review and select for bootup one of two installed firmware images.
- AID Submenu – This allows you to create a unit label.
- LAMPTTEST Submenu – This executes a diagnostic test of the front panel LEDs and VFD.
- RELAY Submenu – This allows you to set the Fault Relay Logic as Normal or Inverted.
- SCRSAVER Submenu – This allows you to set one of five different screen saver behaviors.

6.2.6.1 (UTILITY:) TIME (Real-Time Clock) Submenu

This function follows Military time format (00 to 24 hours).

Edit Real-Time Clock:
HH:MM:SS MM/DD/YY

Edit the time and date settings of the real-time clock. Use the [][] arrow keys to select a digit to edit, and then use the [][] arrow keys to change its value. Press [ENT].

6.2.6.2 (UTILITY:) DISP (VFD Display) Submenu

VFD Display Brightness: 100%
Edit the display brightness. Use the [↑][↓] arrow keys to select a brightness value of 25%, 50%, 75%, or 100%. Press [ENT] when the brightness is suitable.

6.2.6.3 (UTILITY:) FIRMWARE Submenu

WARNING:
THESE MENUS ARE INTENDED FOR DIAGNOSTIC PURPOSES ONLY. DO NOT CHANGE AN IMAGE UNLESS OTHERWISE INSTRUCTED BY COMTECH EF DATA PRODUCT SUPPORT.

This series of submenus permits you to view information about the DT-4500 internal firmware. The converter can store two complete firmware images, and you can select which image will be loaded the next time the unit reboots.

6.2.6.3.1 (FIRMWARE:) INFO

Use the [←][→] arrow keys to select INFO or SELECT. Press [ENT].

6.2.6.3.1.1 (FIRMWARE:) INFO → BOOTROM

Use the [←][→] arrow keys to select BOOTROM, IMAGE#1 or IMAGE#2. Press [ENT] to view the information.

Typical for all nested screens, the top line identifies the firmware number. Where applicable, ‘x’ denotes the firmware revision letter. The bottom line identifies the Firmware Version Number (e.g., 1.2.5) and the firmware build date in month/day/year format.

6.2.6.3.1.1 (FIRMWARE:) INFO → BOOTROM

Bootrom: FW-0020506
X.X.X MM/DD/YY
6.2.6.3.1.2 (FIRMWARE:) INFO→IMAGE#1/#2

Where ‘#X’ denotes the IMAGE#1 or IMAGE#2 firmware load, the IMAGE#1 and IMAGE#2 firmware load info screens are nested as follows:

![IMAGE#X: Bulk APP FPGA]

Use the [earable] arrow keys to select Bulk, App, or FPGA. Press [ENT].

(FIRMWARE:) INFO→IMAGE#1/#2→BULK

![Bulk#X: FW-0020503 X.X.X MM/DD/YY]

(FIRMWARE:) INFO→IMAGE#1/#2→APP

![App#X: FW-0020504 X.X.X MM/DD/YY]

(FIRMWARE:) INFO→IMAGE#1/#2→FPGA

![FPGA#X: FW-0020505 X.X.X MM/DD/YY]

6.2.6.3.2 (FIRMWARE:) SELECT

![Current Active Image: #1 Next Reboot Image: #1 #2]

Use this submenu to select the Current Active Firmware Image. The read-only top line shows the Current Active Image.

On the bottom line: Use the [earable] arrow keys to select #1 or #2 as the Next Reboot Image (i.e., the image that will be active the next time the unit is rebooted). Press [ENT].
If the image that you select is already set as the designated Next Reboot Image, this message displays:

THAT IMAGE IS ALREADY CURRENT. NO CHANGE MADE.

You may repeat the task by instead selecting the alternate image.

6.2.6.4 (UTILITY:) AID (Application Identification String) Submenu

Edit AID Message?
No Yes

The Application Identification (AID) submenu allows you to create a customized message. The AID may serve to identify the satellite, either transponder, beam, destination or other aspects of the application that may be significant to operations. The default AID is "AID MESSAGE".

On the bottom line: At the “Edit AID Message?” prompt, use the [◄][►] arrow keys to select No or Yes. Press [ENT].

Typical for the top and bottom lines of the message, use the [◄][►] arrow keys to select a character, and then use the [▲][▼] arrow keys to change that character. A maximum of 24 characters are available on each line – 48 characters in all. Permissible characters are: [Space]()* + - , / 0-9 and A-Z.

An example of an AID message is as follows:

LBC-4000 SERIES
48 CHARbons MAX TST MESSAGE

Press [ENT] once you have composed your message. At the top level splash screen (which identifies the product in use), you may use the [CLR] key to toggle between the splash screen and the AID message.
6.2.6.5 (UTILITY:) LAMPTEST Submenu

Start Lamp Test?
No Yes

On the bottom line: Use the [←][→] arrow keys to select No or press [CLR] to exit this submenu. Otherwise, select Yes and press [ENT] to continue. The test begins with this message:

Lamp Test in Progress
Please Wait

The front panel runs through a series of diagnostics: the LED array cycles, and then the VFD generate a series of test patterns.

The LEDs and VFD return to their previous display state upon successful completion of the test. Once the test has run, press [CLR] to return to the main menu.

6.2.6.6 (UTILITY:) RELAY Submenu

FAULT RELAY LOGIC
Normal

On the bottom line: Use the [↑][↓] arrow keys to set the Fault Relay Logic as Normal or Invert. Press [ENT].

6.2.6.7 (UTILITY:) SCRSAVER Submenu

ScreenSaver:
Theme=Classic Time=015m

If you were to display the same screen for weeks at a time, the display could become ‘burnt’ with this image. To prevent this, you may set the LBC-4000 ‘screen saver’ to activate after a user-selected timeframe.
On the bottom line: Use the [◀][▶] arrow keys to select Theme or Time. Do NOT press [ENT] at this time.

6.2.6.7.1 (UTILITY:) SCRSAVER → Theme

Five screen saver themes are selectable. Each theme establishes a unique behavior for the screen saver when activated.

Use the [⬆][⬇] arrow keys to select the theme as Classic, Zip-ped, Cycling, B-Board, or S-Wiper. Press [ENT].

The behavior of each theme is as follows:

- **The Classic theme** – The top line of the display shows the user-defined “Application ID”, and the bottom line shows ‘Press any key...’. The message ‘crawls’ from right to left across the screen, and then wraps around.

- **The Zip-ped theme** – This mode features a ‘marquee’ display. The message ‘zips to center’ from ‘offstage right’ and then ‘zips/exits offstage right.’

- **The Cycling theme** – This mode features a single line display comprised of the user-defined “Application ID” and “LBC-4000.” The message ‘crawls’ along from right to left across the top line of the VFD, and then wraps around to the bottom line, moving left to right as it ‘crawls off’ the display.
• **The B-Board theme** – This mode features a ‘marquee’ display that performs a ‘slow reveal’ from left to right, and then performs a ‘slow wipe’, again from left to right.

![Comtech EF Data LBC-4000](pass1)

• **The S-Wiper theme** – This mode features two separate ‘marquee’ displays. The screens alternate, with Marquee ‘1’ performing a slow reveal/wipe from left-to-right; Marquee ‘2’ then performs a slow reveal/wipe from right-to-left.

![Pass 1: Comtech EF Data LBC-4000](pass2)

Press any key to de-activate the screen saver and restore the previous screen.

6.2.6.7.2 (UTILITY:) SCRSAVER → Time

To prevent the display from becoming burnt by a constant image, the unit activates its screen saver feature after a factory default of 60 minutes (one hour).

Use the [↑][↓] arrow keys to adjust this time from **OFF to 999** minutes. Press [ENT].
Chapter 7. ETHERNET INTERFACE OPERATION

7.1 Overview

Operation of the Ethernet Interface is available when you connect a user-supplied, Windows-based PC to the LBC-4000 rear panel ‘10/100 ETHERNET’ 100BaseTX RJ-45 port.

The LBC-4000 L-Band Up/Down Converter System, as initially released, does not feature a rear panel ‘10/100 ETHERNET’ port. Only current production units offer Ethernet Interface operation. See Chapter 4, FRONT AND REAR PANEL CONNECTORS for more information.

Three protocols are available for Ethernet remote M&C. Operate these protocols separately.

- Simple Network Management Protocol (SNMP). This requires a user-supplied Network Monitoring System (NMS) and a user-supplied Management Information Base (MIB) File Browser.

 CAUTION
 Comtech EF Data recommends use of the Ethernet-based SNMP interface for advanced users only. All other users are strongly encouraged to use the HTTP (Web Server) Interface for remote Monitor and Control (M&C) of the unit.

- Telnet Interface. You may use the serial remote control protocol via this interface. This requires use of Windows Command-line, or a user-supplied terminal emulation program such as HyperTerminal.

- HTTP Interface. This requires a compatible user-supplied web browser such as Internet Explorer.
7.1.1 Prerequisites

Before you proceed with Ethernet remote product management, make sure the following is true:

- The converter is operating with the latest version firmware files.
- The User PC is running a terminal emulation program for operation of the Telnet Interface.
- The User PC is running a compatible web browser for operation of the HTTP Interface.
- The User PC is connected to the unit’s ‘10/100 ETHERNET’ port.
- You have recorded the unit’s Management IP Address.

7.2 SNMP Interface

SNMP is an Internet-standard protocol for managing devices over IP networks. An SNMP-managed network has three key components:

- The managed device. This includes this unit.
- The SNMP Agent. This software runs on the converter. The unit SNMP Agent supports both SNMPv1 and SNMPv2.
- The user-supplied Network Management System (NMS). This software runs on the User PC.

7.2.1 Management Information Base (MIB) Files

An MIB file is used for SNMP remote management of a unique device, and consist of a tree of nodes called Object Identifiers (OIDs). Each OID provides remote management of a particular function. These MIB files should be compiled in a user-supplied MIB Browser or SNMP Network Monitoring System server. In these unit MIB file names, the letter ‘x’ represents the revision of the file.

7.2.1.1 ComtechEFData Root MIB File

- FW-0000235x.mib
- ComtechEFData MIB file gives the root tree for all Comtech EF Data products and consists of only the following OID:
 - Name: comtechEFData
 - Type: MODULE-IDENTITY
7.2.1.2 LBC-4000 Common MIB File

- FW-0020542x.mib
- MIB file consists of all of the OID’s for management of the unit functions.

7.2.1.3 LBC-4000 Traps MIB File

- FW-0020543x.mib
- Trap MIB file provides SNMPv1 traps common for the unit.

7.2.2 SNMP Community Strings

CAUTION

In SNMP v1/v2, the SNMP Community String is sent unencrypted in the SNMP packets. Caution must be taken by the network administrator to ensure that SNMP packets travel only over a secure and private network if security is a concern.

For correct SNMP operation, the converter MIB files must be used with the associated version of the unit M&C. See the LBC-4000 FW Release Notes for information on the required FW/SW compatibility.

The LBC-4000 uses Community Strings as a password scheme that provides authentication before gaining access to the router agent’s MIBs. They are used to authenticate users and determine access privileges to the SNMP agent. The LBC-4000 defines three Community Strings for SNMP access:

- Read Community default = public
- Write Community default = private
- Trap Community default = comtech

Type the SNMP Community String into the user-supplied MIB Browser or Network Node Management software.
7.2.3 SNMP Traps

The LBC-4000 SNMP agent supports both SNMPv1 and v2. The Traps file needs to be compiled only if SNMPv1 traps are to be used.

The LBC-4000 has the ability to send out SNMP traps when certain events occur in the unit. For example, the unit sends out traps when an alarm or a fault occurs or clears. Which style of traps the LBC-4000 sends are configured using the LBC-4000SNMPTrapVersion OID.

The LBC-4000 supports MIB2 SNMPv1 traps and SNMPv2 notifications.

7.3 Telnet Interface

See Chapter 8. SERIAL INTERFACE OPERATION for detailed information about using remote command and queries.

![Telnet Interface Example – Windows Command-line](image)

The LBC-4000 provides a Telnet interface for equipment M&C via the standard equipment Remote Control protocol.

Telnet is implemented in the Ethernet M&C in a "Telnet wrapper". When the user Telnets to the unit, it emulates a local EIA-232C or EIA-485 serial connection to the unit. You can then type the same command syntax that he would use from a serial remote terminal and the Ethernet M&C "unwraps" the Telnet packet and sends it on to the base unit processor, which responds to it as if it was a serial remote command.
The Telnet interface requires user login at the Administrator level and Read/Write level. Once logged into the Telnet interface as the Administrator, you have access to the optional serial-based Remote Control Interface. Figure 7-1 shows an example of the login process for remote control operation.

7.3.1 Using HyperTerminal for Telnet Remote Control Operation

![HyperTerminal](image)

Figure 7-2. Telnet Interface Example – HyperTerminal

There is a disadvantage when using Windows Command line as a Telnet client with the optional Remote Control protocol. For the messages coming from the Telnet Server, Command line cannot translate a carriage return command (\r) to a carriage return + line feed command (\r\n). Therefore, any multi-line Target-to-Controller response (e.g., the response to the FRW? query) shows as one line, with the latter lines overwriting the previous lines.

To see the full response messages, you can use the HyperTerminal terminal emulation program configured as a Telnet client. Figure 7-2 shows an example of the login process when using HyperTerminal as the Telnet interface.
7.3.1.1 Configure HyperTerminal for Telnet Remote Control Operation

See Figure 7-3. Do these steps:

1. Make sure to define the Connect To Telnet connection properties correctly (File → Properties) (Figure 7-3, left):
 a. Enter the unit’s Traffic/Management IP Address as the “Host address” (e.g., 192.168.1.1).
 b. Enter TCP Port 23 as the “Port number”.
 c. Set “Connect using” to TCP/IP (Winsock) instead of COM1 or COM2.
 d. Click [OK] to save your settings.

2. For ASCII Setup (File → Properties → Settings → ASCII Setup) (Figure 7-3, right):
 a. Check the “Send line ends with line feeds” option in the ‘ASCII Sending’ section.
 b. Check the “Append line feeds to incoming line ends” option in the ‘ASCII Receiving’ section.
 c. Click [OK] to save your settings.
7.4 HTTP (Web Server) Interface

A user-supplied web browser allows the full monitoring and control (M&C) of the LBC-4000 from its HTTP Interface. This non-secure embedded web application is designed for, and works best with, Microsoft Internet Explorer Version 5.5 or higher.

7.4.1 HTTP Interface User Login

1) You must use LBC-4000 Front Panel operation to select “Ethernet” as your mode of operation prior to login. Failure to configure the unit accordingly will cause the Login dialogue box to return you to a blank web page.

2) You must retrieve the assigned Management IP Address from the LBC-4000 Front Panel menu:

(SELECT:) CONFIG → Remote → Ethernet → Address

See Chapter 6. FRONT PANEL OPERATION for further details. You may also need to consult with your network administrator to determine the appropriate Management IP address assignment for your converter.

Do these steps:

1. From the PC, enter the default Management IP Address for the unit (e.g., http://192.168.1.4) into the Address area of the browser.

2. In the Login window, type the User name and Password, and then click OK.
Failure to enter the correct User name and Password will return you to
the Login window. Should you continue to specify an invalid User name
or Password, the message “You do not have security privilege to access
this area.” displays.

Otherwise, upon entry of the valid IP address and login information
LBC-4000 Web Server Interface “splash” page displays, similar to the
example shown in Figure 7-4. The unit and firmware version in this
example will differ from your setup.

Figure 7-4. HTTP Interface “Splash” Page Example
7.4.2 HTTP Interface Features

7.4.2.1 Menu Tree

Figure 7-5 illustrates the menu hierarchy for the HTTP Interface. It features four navigation tabs (shown in blue). Primary page hyperlinks (grey) grant access to individual web pages.

<table>
<thead>
<tr>
<th>Home</th>
<th>Admin</th>
<th>Config</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home</td>
<td>Access</td>
<td>Conv A</td>
<td>Summary</td>
</tr>
<tr>
<td>Contact</td>
<td>SNMP</td>
<td>Conv B</td>
<td>Faults</td>
</tr>
<tr>
<td>Support</td>
<td></td>
<td>Ref</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Utility</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Redundancy</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Serial</td>
<td></td>
</tr>
</tbody>
</table>

Figure 7-5. HTTP Interface Menu Tree (FW Ver. 1.2.5)

7.4.2.2 Page Navigation

The HTTP Interface has four navigation tabs at the top of each page. Click a navigation tab to see its page hyperlinks. Click a page hyperlink to open a page.

This manual uses a convention for all web pages to show you how to navigate to the featured page: Navigation Tab | Page Hyperlink. For example, “Home | Home” instructs you to click the ‘Home’ navigation tab, and then select the ‘Home’ page hyperlink.

7.4.2.3 Page Sections

This manual explains the purpose and operation for each Web page and its sections. Each page has one or more sections. The title at the upper-left corner of each page or section describes its operational features. Each section can
have editable fields, action buttons and *read-only* displays for a specific function.

7.4.2.4 Action Buttons

Action buttons are important in the HTTP Interface. Click an action button to do one of these tasks:

- Click **[Refresh]** to see the latest page data (see Sect. 7.4.2.4.1).
- **[Reset]** changed parameters to remove *unsaved* changes.
- Click **[Submit]** to save changes.

If you change any parameters, make sure to click the related action button before you leave the page. If you go to another page without first clicking the action button, your changes are not saved.

7.4.2.4.1 Page Refresh

Many of the pages feature a **[Refresh]** action button located adjacent to the uppermost Page Section label. You may click **[Refresh]** at any time to update the page with its latest reported operational data and current configured settings.

7.4.2.5 Drop-down Lists

A drop-down list lets you choose from a list of selections.

Left-click the drop-down button to open the list. Then, left-click on an item to select that choice.

7.4.2.6 Text or Data Entry

Text boxes let you type data into a field. An action button can be associated with a single text box, or a group of text boxes. For any text box, left-click anywhere inside the box and type the desired data into that field. Make sure to press **ENTER** when done typing.

Click the related action button to save the data.
7.5 HTTP Interface Page Examples and Descriptions

See Chapter 6. FRONT PANEL OPERATION for detailed descriptions of the configuration and monitoring features available throughout this interface.

The page figures provided in this section are intended for reference only. Your setup will differ.

7.5.1 Home Pages

Click the Home tab, and then select the Home, Contact, or Support hyperlink to continue.

7.5.1.1 Home | Home

Use this page to identify the product in use. Click the Home navigation tab or the nested hyperlink to return to this page from anywhere in the HTTP Interface.

![Figure 7-6. ‘Home | Home’ Page](image)

Figure 7-6. ‘Home | Home’ Page
7.5.1.2 Home | Contact

For all product support, please call:

+1.240.243.1880

+1.866.472.3963 (toll free USA)
7.5.1.3 Home | Support

The Administrator must configure the SMTP server, domain name, and destination on the ‘Admin | Access’ page (Sect. 7.5.2.1) in order to use this page.

Use this page to compose an e-mail message when you have questions about or problems with the unit.

![Figure 7-8. ‘Home | Support’ Page](image)

The ‘Home | Support’ page (Figure 7-8) uses Simple Mail Transport Protocol (SMTP) to send e-mail to Comtech EF Data Product Support:

cdmipsupport@comtechefdata.com

Enter the Contact Information and compose a message in the Problem Report text window. The Problem Report section allows up to 256 characters maximum.

Click [Submit Email] to send the message.
7.5.2 Admin (Administration) Pages

The ‘Admin’ pages are available only to users who have logged in using the Administrator Name and Password.

Click the Admin tab, and then select the Access or SNMP hyperlink to continue.

7.5.2.1 Admin | Access

The Administrator must use this page as the means to set up user names, passwords, the E-mail server, and the host IP addresses as needed to facilitate communication with the HTTP Interface.

Network Maintenance

IP Gateway, IP Address/Range – Enter the desired IP Gateway Address and Management IP Address/ Range in these text boxes.
MAC Address – The MAC Address is *read-only*. It is set at the factory to a guaranteed unique address. It cannot be changed.

Click [Change IP Address]. Click [Reset] to revert to the previously assigned IP Gateway and IP Address/Range,

System Account Access Information

Admin, Read/Write, and Read Only Names and Passwords:

⚠️ The User name and Password can be any alphanumeric combination with a maximum length of 10 characters. The factory defaults for these names/passwords are:

- **Admin** comtech/comtech
- **Read/Write** opcenter/1234
- **Read Only** monitor/1234

SMTP Server – Specify the mail server IP address from where you want to send the e-mail.

SMTP Domain Name / Destination – The Administrator can assign the SMTP Domain Name and Destination. This is required if the e-mail feature of the ‘Home | Support’ page (Sect. 7.5.1.3) is to be used.

- For **SMTP Domain Name**, specify the domain of the e-mail server (usually found to the right of the @ symbol in an e-mail address).
- For **SMTP Domain Destination**, specify the e-mail recipient name (usually found to the left of the @ symbol in an e-mail address).

Click [Submit Access]. Click [Reset] to revert to the previously assigned System Account Access Information.

Webpage Timeout

To set an automatic timeout to safeguard access to an already logged-in unit, use the drop-down list to set the time value as **5 minutes** or **8 hours**, and then click [Change].

The active session terminates if the unit remains idle (i.e., when no user activity occurs) beyond the assigned Webpage Timeout. A valid user name and password is then required to resume the HTTP Interface session.
7.5.2.2 Admin | SNMP

Sect. 7.2 SNMP Interface

The Administrator must use this page to manage the SNMP (Simple Network Management Protocol) settings.

![Figure 7-10. 'Admin | SNMP' Page](image)

Simple Network Management – Use the drop-down list to set the Simple Network Management operational setting as Enabled or Disabled.

The Read, Write, and Trap Community Strings can be any combination of characters and a length of 0 to 20 characters:

- The factory default Read Community String is public.
- The factory default Write Community String is private.
- The factory default Trap Community String is comtech.

SNMP Contact / SNMP Location / SNMP Name – Enter this identity information in any alphanumeric combination with a length of 0 to 20 characters.

Enable Authentication Trap – Use the drop-down list to set Trap operation as Enabled or Disabled.

The Administrator can assign up to two Trap IP addresses.

Trap Version – Use the drop-down list to set the Trap Version as SNMPv1 or SNMPv2.
7.5.3 Config (Configuration) Pages

Click the Config tab, and then select the Conv A, Conv B, Ref, Utility, Redundancy, or Serial hyperlink to continue.

7.5.3.1 Config | Conv A / B Pages

Use this page to configure the communications, operations, and alarms/faults handling for the Converter A or Converter B IDU modules.

![Config | Converter A/B Pages](image_url)

Figure 7-11. ‘Config | Converter A/ B’ Pages
Converter A / Converter B

Frequency in MHz – Enter an operating RF Frequency (if the converter is a Ku-Band down converter) in the range of 10950 to 12750 MHz; otherwise, this field displays as N/A.

Attenuation (dB) – Enter a valid attenuation level (00.00 to 20.00 dB) in 0.25 dB steps.

Attenuation Offset (Conv A page only): Enter a valid value, in dB, for the attenuation offset.

Click [Change Configuration]. Click [Reset] to revert to the previously assigned parameters (Conv B page only).

Mute

Use the drop-down list to set the Configuration Mute Mode as On or Off. Click [Change].

Carrier Mute Mode

Use the drop-down list to set the Carrier Mute Mode as On or Off. Click [Change].

Slope

Enter a slope value (0.0 to 1.0) in 0.1 steps. Click [Change] when done.

Spectrum Inversion

Use the drop-down menu to select the Spectrum Inversion function as INV or NRM (Normal), and then click [Change].
7.5.3.2 Config | Ref

Use this page for monitor and control of the optional external reference oscillator.

Reference Oscillator

External Reference Freq – This *read-only* item displays the operational value of the external reference oscillator (i.e., 5 MHz or 10 MHz) is displayed here.

Reference Tuning (VDC) – This *read-only* item displays the currently defined Reference Frequency tuning adjustment value.

External Reference Lock – This *read-only* item displays the External Reference Lock state.

Tuning Adjustment (0-255) – Enter a numeric value for the reference oscillator tuning voltage here. The default value is 087, with allowable values from 0 to 255.

Click [Submit].
7.5.3.3 Config | Utility

Use this page to configure a variety of converter operating parameters.

![Figure 7-13. ‘Config | Utility’ Page](image)

Date

Enter a date in the form MM/DD/YY (where MM = month [01 to 12], DD = day [01 to 31], and YY = year [00 to 99]).

Time

Enter a time in the form HH:MM:SS (where HH = hour [00 to 23], MM = minutes [00 to 59], and SS = seconds [00 to 59]).

Click [Change Date/Time].

Circuit ID

This feature is called the AID – Application ID – on the LBC-4000 Front Panel ‘UTILITY’ submenu.

Enter a Circuit ID string of up to 48 characters – 24 characters per line. Click [Change CID].
Current Active Firmware Image

This *read-only* section identifies the selected **Current Active Firmware Image**. In this example, **Image 2** is the **Current Active Firmware Image**.

Next Reboot Image

Use the drop-down menu to select Image 1 or 2. Press **[Submit]** when done.

Click **[Reboot Now]** to reboot the LBC-4000 using the **Current Active Firmware Image**.

Fault Relay Logic

Use the drop-down menu to select the Fault Relay Logic as **Normal** or **Invert**, and then click **[Submit]**.

Perform Soft Reboot

Click **[Reboot Now]** to reboot the unit using the **Current Active Firmware Image**.

Firmware Information

This *read-only* scrollable window identifies the Bootrom, Bulk Image#1 and Bulk Image #2 firmware information.
7.5.3.4 Config | Redundancy

See Appendix A. REDUNDANT SYSTEM OPERATION for the functional description of this page.

Use this page to configure the LBC-4000’s Redundancy Switch Mode.

![Config | Redundancy Page](image)

Figure 7-14. ‘Config | Redundancy’ Page
7.5.3.5 Config | Serial

Use this page to configure LBC-4000 operating parameters over the EIA-485/232 serial interface.

Figure 7-15. Config | Serial page

Serial

Use the drop-down menu to select the operating serial mode as RS-485 or RS-232.

Remote Address

Enter a valid remote control address from 0001 to 9999.

Baud Rate

Use the drop-down menu to select the operating baud rate as 1200, 2400, 4800, 9600, 19200, or 38400 baud.

Data bits – Parity – Stop Bits

Use the drop-down menu to select the asynchronous character format as 8-N-1 (8 data bits, no parity, 1 stop bit); 7-O-2 (7 data bits, odd parity, 2 stop bits); or 7-E-2 (7 data bits, even parity, 2 stop bits).

Click [Change Serial Configuration].
7.5.4 Status Pages

Use these pages to review operational statistics, status windows, and the stored faults table.

Click the Status tab, and then select the Summary or Faults hyperlink to continue.

7.5.4.1 Status | Summary

Use this read-only page to review pertinent information about the configured setup of the converter, its current operating parameters, and the operational status of the unit.

Typical for all STATUS columns, when any operating parameter is within acceptable limits, the STATUS indicates OK within a green box. If a fault condition exists, the message changes to FAULT within a red box.

Figure 7-16. ‘Status | Summary’ Page
Parameter Status

Product identification (i.e., CID/AID, serial and model numbers), active firmware, software image information, and other operational configuration information is provided here.

Converter A / Converter B Status

This section identifies the converter installed in each module slot (BUC or BDC) and each module’s associated RF conversion band and frequency, attenuation value, mute status, and online/offline status.

Converter A / B, PS (Power Supply) A / B, Monitor and Status

This section provides the current monitored value for each module (BUC or BDC), including the RF/IF lockout status, operating voltages and temperatures. The operating voltages for each power supply are also provided.

Note that:

1) Valid Converter A/Converter B LNA Current readings are provided only if the pertinent LBC-4000 Down Converter (BDC) is optionally configured with an LNA. These parameters otherwise display as N/A if the pertinent converter is a BUC.

2) Valid Converter A/Converter B Forward RF Power readings are provided only if the pertinent LBC-4000 up converter (BUC) is optionally configured with the Power Monitor feature. These parameters otherwise display as N/A if the pertinent converter is a BDC.

3) Valid Power Supply 2 and Local Switch Position information is provided with redundant configurations only.
7.5.4.2 Status | Faults

Use this read-only page to review the current stored faults.

Figure 7-17. ‘Status | Faults’ Page

This page features a scrollable window that displays the unread stored faults log in sequential, date-stamped format.

Unread Stored Faults: ###

The section header displays the running tally of unread stored faults.

The event log displays the five oldest stored faults in the event log. The tally decrements as events are transferred from the stored events log for display in this window.

The bottom of the section provides the following management functions:

- **Read Next Five Faults** – Select this to display the next five unread stored faults in the log.
- **Clear Fault Log** – Select this to clear all stored faults from the log.
- **Initialize Faults Pointer** – Select this to reset the internal pointer. This allows queries to start at the beginning of the stored faults log.

Click [Submit].
Chapter 8. SERIAL INTERFACE OPERATION

8.1 Overview

Serial-based Remote Product Management of the LBC-4000 L-Band Up/Down Converter System is available using the rear panel ‘J1 COM1’ port. This interface is either an EIA-485 multi-drop bus (for the control of many devices) or an EIA-232 connection (for the control of a single device). Data is transmitted in asynchronous serial form, using ASCII characters. Control and status information is transmitted in packets of variable length, in accordance with the structure and protocol defined in later sections.

8.1.1 Prerequisites

Before you proceed with serial-based remote product management, make sure that:
- Your LBC-4000 is operating with the latest version firmware files.
- Your LBC-4000 is connected to a user-supplied, Windows-based PC as follows:
 - The PC serial port is connected to the LBC-4000 rear panel ‘J1 COM1’ port with a user-supplied serial cable. The pinout table for this connector is provided in Sect. 4.2.3 Operational Connections.
 - The PC Ethernet port is connected to the LBC-4000 rear panel ‘10/100 ETHERNET’ port with a user-supplied hub, switch, or direct Ethernet cable connection.
 - The PC is running a terminal emulation program (for use of the LBC-4000 Serial Interface) and a compatible web
browser (for use of the LBC-4000 HTTP Interface).

- The LBC-4000 Management IP Address has been noted using the serial interface. (The firmware information (i.e., revision letters, version numbers, etc.) as shown may differ from your setup.)

8.1.2 EIA-485

For applications where multiple devices are to be monitored and controlled, a full-duplex (4-wire plus ground) EIA-485 is preferred. Half-duplex (2-wire plus ground) EIA-485 is possible, but is not preferred. In full-duplex EIA-485 communication, there are two separate, isolated, independent, differential-mode twisted pairs, each handling serial data in different directions.

It is assumed that a 'Controller' device (a PC or dumb terminal) transmits data in a broadcast mode via one of the pairs. Many 'Target' devices are connected to this pair, and all simultaneously receive data from the Controller. The Controller is the only device with a line-driver connected to this pair; the Target devices have only line-receivers connected.

In the other direction: On the other pair, each Target has a Tri-state line driver connected; the Controller has a line-receiver connected. All the line drivers are held in high-impedance mode until one – and only one – Target transmits back to the Controller. Each Target has a unique address; each time the Controller transmits, the address of the intended recipient Target is included in a framed 'packet' of data. All of the Targets receive the packet, but only one (the intended) will reply. The Target enables its output line driver and transmits its return data packet back to the Controller in the other direction on the physically separate pair.

EIA-485 (full duplex) summary: Two differential pairs – one pair for **Controller-to-Target**, one pair for **Target-to-Controller**.

- The **Controller-to-Target** pair has one line driver (Controller), and all Targets have line-receivers.
- The **Target-to-Controller** pair has one line receiver (Controller), and all Targets have Tri-state drivers.
8.1.3 EIA-232

With this simpler configuration, the Controller device is connected directly to the Target via a two-wire-plus-ground connection. Controller-to-Target data is carried, via EIA-232 electrical levels, on one conductor, while the Target-to-Controller data is carried on the other conductor.

8.2 Remote Commands and Queries Overview

8.2.1 Packet Structure

The structure of a Command, Response, or Error Message is as follows:

- Start of Packet Character
- Target (Device) Address
- Address Delimiter
- Instruction Code
- Instruction Code Qualifier
- Optional Message Argument
- End of Packet

Command Example (Controller-to-Target): <0412/MUT_A_ON{cr}
Query Example (Controller-to-Target): <0412/MUT_A{cr}
Query Response Example (Target-to-Controller): >0412/MUT_A_ON{CR}{LF}

8.2.1.1 Start of Packet Character

The Start of Packet Character begins each message:

- **Controller-to-Target**: ‘<’ (ASCII code 60) designates the start of a user command or query.
- **Target-to-Controller**: ‘>’ (ASCII code 62) designates the start of a Target response.

8.2.1.2 Target (Device) Address

Use the “SPA” remote command to assign an address to a Target unit. Up to 9,999 devices can be uniquely addressed.
Typical for EIA-232 or EIA-485 applications, the permissible range of values is from 0001 to 9999. Each block converter module has its own address:

<table>
<thead>
<tr>
<th>Module</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>LBC-4000</td>
<td>Base</td>
</tr>
<tr>
<td>Block Converter A</td>
<td>Base + 1</td>
</tr>
<tr>
<td>Block Converter B</td>
<td>Base + 2</td>
</tr>
</tbody>
</table>

If several devices share an EIA-485 bus, note that the LBC-4000 requires three addresses, and the device numbering should be spaced accordingly.

The Controller sends a packet with the address of a Target – the destination of the packet. When the Target responds, the address used is the same address, to indicate to the Controller the source of the packet. The Controller does not have its own address.

8.2.1.3 Address Delimiter

This is the forward slash character `/` (ASCII code 47).

8.2.1.4 Instruction Code

Upper and lower case alphabetic characters may be used (A-Z, and a-z).

This three-character alphabetic string, whenever possible, references the subject command or query. This aids in the readability of the message, should it be displayed in its raw ASCII form.

8.2.1.5 Instruction Code Qualifier

The Instruction Code Qualifier is the underscore `_` (ASCII code 95). This single character further qualifies the preceding instruction code. The Instruction Code Qualifier obeys these rules:

1. From **Controller-to-Target**, the underscore `_` plus additional parameter(s) comprise the assignment operator. This combination
defines the **command** configuration parameters that are issued to the Target.

For example, the Controller-to-Target command “<0001/MUT_A_ON{cr}” means ‘turn ON the mute function of Converter A’.

2. The ‘ underscore, when submitted Controller-to-Target without parameters, functions as a **query**. Submitted in this format, the Controller directs the Target to report the current configured value for that parameter (Instruction Code).

 For example, the Controller-to-Target query “<0001/MUT_A_{cr}” means ‘return the current state of the mute function of Converter A’.

3. From **Target-to-Controller**, if the instruction sent from Controller-to-Target is successful, the Target responds by echoing that same instruction to the Controller.

8.2.1.5.1 Error Response

If a Target cannot execute a Command or detects a protocol violation, the Controller generates an error response. For example:

```
>0001?RED ER Error Message{cr}{lf}
```

Note that:

- The "/" address delimiter changes in the response to a "?".
- The Instruction Code is echoed, followed by two unique characters provided for analysis. This example uses “ER”.
- A text string explaining the error follows.

8.2.1.6 Optional Message Arguments

Arguments are not required for all messages. Arguments include these ASCII codes:

- Characters ‘0’ through ‘9’ (ASCII codes 48 through 57)
- Period ‘.’ (ASCII code 46)
- Comma ‘,’ (ASCII code 44)
8.2.1.7 End of Packet

- **Controller-to-Target:** This is the Carriage Return character \{CR\} (ASCII code 13).
- **Target-to-Controller:** This is the two-character sequence of Carriage Return and Line Feed \{CR\}{LF} (ASCII codes 13 and 10). This pairing shows the valid end of a packet.

8.3 Serial Remote Commands and Queries

<table>
<thead>
<tr>
<th>Sect.</th>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.1</td>
<td>AID</td>
<td>Application Identification</td>
</tr>
<tr>
<td>8.3.2</td>
<td>ATO</td>
<td>Attenuation Offset</td>
</tr>
<tr>
<td>8.3.3</td>
<td>ATT</td>
<td>Attenuation Level</td>
</tr>
<tr>
<td>8.3.4</td>
<td>CAA</td>
<td>Clear All Alarms</td>
</tr>
<tr>
<td>8.3.5</td>
<td>CAS</td>
<td>Concise Alarm Status</td>
</tr>
<tr>
<td>8.3.6</td>
<td>CCS</td>
<td>Concise Configuration Status</td>
</tr>
<tr>
<td>8.3.7</td>
<td>CMM</td>
<td>Configure Mute Mode</td>
</tr>
<tr>
<td>8.3.8</td>
<td>CMS</td>
<td>Concise Maintenance Status</td>
</tr>
<tr>
<td>8.3.9</td>
<td>CUS</td>
<td>Concise Utility Status</td>
</tr>
<tr>
<td>8.3.10</td>
<td>DAT</td>
<td>Set Real-Time Clock Date</td>
</tr>
<tr>
<td>8.3.11</td>
<td>FBU</td>
<td>Force Backup</td>
</tr>
<tr>
<td>8.3.12</td>
<td>FRE</td>
<td>Set Operating Frequency</td>
</tr>
<tr>
<td>8.3.13</td>
<td>FRL</td>
<td>Fault Relay Logic</td>
</tr>
<tr>
<td>8.3.14</td>
<td>FRM</td>
<td>Retrieve Firmware Number</td>
</tr>
<tr>
<td>8.3.15</td>
<td>FRW</td>
<td>Retrieve Legacy Firmware Number</td>
</tr>
<tr>
<td>8.3.16</td>
<td>IMG</td>
<td>Select Boot Image</td>
</tr>
<tr>
<td>8.3.17</td>
<td>IPA</td>
<td>Management IP Address</td>
</tr>
<tr>
<td>8.3.18</td>
<td>IPG</td>
<td>Gateway IP Address</td>
</tr>
<tr>
<td>8.3.19</td>
<td>LAA</td>
<td>List All Alarms</td>
</tr>
<tr>
<td>8.3.20</td>
<td>LRS</td>
<td>Local or Remote State</td>
</tr>
<tr>
<td>8.3.21</td>
<td>MAC</td>
<td>Retrieve Unit MAC Address</td>
</tr>
<tr>
<td>8.3.22</td>
<td>MUT</td>
<td>Mute State</td>
</tr>
<tr>
<td>8.3.23</td>
<td>ONL</td>
<td>Online State</td>
</tr>
<tr>
<td>8.3.24</td>
<td>PNM</td>
<td>Retrieve Part Numbers</td>
</tr>
<tr>
<td>8.3.25</td>
<td>RAS</td>
<td>Retrieve Alarm Status</td>
</tr>
<tr>
<td>8.3.26</td>
<td>RCS</td>
<td>Retrieve Configuration Status</td>
</tr>
<tr>
<td>Sect.</td>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>8.3.27</td>
<td>RED</td>
<td>Redundancy Mode</td>
</tr>
<tr>
<td>8.3.28</td>
<td>REM</td>
<td>Remote Mode</td>
</tr>
<tr>
<td>8.3.29</td>
<td>RET</td>
<td>Retrieve Equipment Type</td>
</tr>
<tr>
<td>8.3.30</td>
<td>RET_y_</td>
<td>Retrieve Module Type</td>
</tr>
<tr>
<td>8.3.31</td>
<td>RMS</td>
<td>Retrieve Maintenance Status</td>
</tr>
<tr>
<td>8.3.32</td>
<td>RUS</td>
<td>Retrieve Utility Status</td>
</tr>
<tr>
<td>8.3.33</td>
<td>SAM</td>
<td>Set Auto/Manual Switching Mode</td>
</tr>
<tr>
<td>8.3.34</td>
<td>SAS</td>
<td>Summary Alarm Status</td>
</tr>
<tr>
<td>8.3.35</td>
<td>SBR</td>
<td>Set Remote Baud Rate</td>
</tr>
<tr>
<td>8.3.36</td>
<td>SPA</td>
<td>Set Physical Address</td>
</tr>
<tr>
<td>8.3.37</td>
<td>SPI</td>
<td>Spectral Inversion</td>
</tr>
<tr>
<td>8.3.38</td>
<td>SRO</td>
<td>Reference Oscillator Adjustment</td>
</tr>
<tr>
<td>8.3.39</td>
<td>SSA</td>
<td>Slope Adjustment Level</td>
</tr>
<tr>
<td>8.3.40</td>
<td>SSN</td>
<td>Retrieve Serial Number</td>
</tr>
<tr>
<td>8.3.41</td>
<td>TIM</td>
<td>Set Real-Time Clock Time</td>
</tr>
<tr>
<td>8.3.42</td>
<td>VFD</td>
<td>Set VFD Brightness</td>
</tr>
</tbody>
</table>
8.3.1 AID (Application Identification)

Command or Query. Use “AID” to sets or return a name (also called the ‘Circuit ID’) for the unit or station.

<table>
<thead>
<tr>
<th>Controller-to-Target Instruction Code and Qualifier</th>
<th>Arguments for Command or Response to Query</th>
<th>Description of Arguments</th>
</tr>
</thead>
</table>
| AID_ | 48 bytes, alphanumeric | Set or return in the form AID_xxxxxxxxxxxxxxxxxx
xx where:
x...x=First line, limited to first 24 characters.
y...y=Second line, limited to next 24 characters. (Do not issue carriage return between first line and second line) |
| AID_ | | AID_x...y |

Command Example: <0001/AID_----Earth Station 1--------Converter #1-----{cr}

8.3.2 ATO (Attenuation Offset)

Command or Query. Use “ATO” to set or return the Converter A attenuation offset value.

<table>
<thead>
<tr>
<th>Controller-to-Target Instruction Code and Qualifier</th>
<th>Arguments for Command or Response to Query</th>
<th>Description of Arguments</th>
</tr>
</thead>
</table>
| ATO_A_SY.Z | 6 bytes, alphanumeric | Set or return in the form ATO_A_SY.Z where:
A=Conv ‘A’
S=Sign (+ or -)
Y=Number between 0 and 5
Z=Number between 0 and 9 |
| ATO_ | | ATO_A_SY.Z |

Command Example: <0001/ATO_A_+2.3{cr}

Notes:
1) “ATO” is valid for Conv A only. Specifying Conv B returns an error message.
2) Y.Z value cannot be greater than 5.0.
3) If (displayed attenuation+offset)<0, actual attenuation will be set to 0 dB.
4) If (displayed attenuation+offset)>maximum attenuation, actual attenuation will be set to maximum attenuation.
5) Actual attenuation equals the sum of Attenuation displayed on front panel plus Offset.
8.3.3 ATT (Attenuation Level)

Command or query. Use “ATT” to set or return the attenuation level, in dB, in 0.1 dB steps.

<table>
<thead>
<tr>
<th>Controller-to-Target Instruction Code and Qualifier</th>
<th>Arguments for Command or Response to Query</th>
<th>Description of Arguments</th>
<th>Target-to-Controller Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATT_y_xx.xx</td>
<td>ATT_y_</td>
<td>7 bytes, alphanumeric</td>
<td>ATT_y_xx.xx ATT_y_ xx.xx</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Set or return in the form ATT_y_xx.xx where: y=A (Conv A) or B (Conv B) xx.xx=Valid attenuation level, in dB (0.1 dB step size is factory default)</td>
<td></td>
</tr>
</tbody>
</table>

Command Example: `<0001/ATT_A_+12.20{cr}`

8.3.4 CAA (Clear All Alarms)

Command only. Use “CAA” to clear all stored alarms from the Target’s events log.

<table>
<thead>
<tr>
<th>Controller-to-Target Instruction Code and Qualifier</th>
<th>Arguments for Command or Response to Query</th>
<th>Description of Arguments</th>
<th>Target-to-Controller Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAA_xxx{cr}</td>
<td>N/A</td>
<td>3 bytes, alphabetic</td>
<td>CAA_CLEARED N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Set or return in the form CAA_xxx where: xxx=YES</td>
<td></td>
</tr>
</tbody>
</table>

Command Example: `<0001/CAA_YES{cr}`
8.3.5 CAS (Concise Alarm Status)

Query only. Use “CAS” to return the Alarm Status for the unit.

<table>
<thead>
<tr>
<th>Controller-to-Target Instruction Code and Qualifier</th>
<th>Arguments for Command or Response to Query</th>
<th>Description of Arguments</th>
<th>Target-to-Controller Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command</td>
<td>Query</td>
<td>13 bytes, numeric</td>
<td>Returns alarm status as 0 = NO FAULT or 1 = FAULT for each item in the form “CAS_abcdedefghijkl[mcr][lf]” where: a=12VDC #1 Fault b=8VDC #1 Fault c=5VDC #1 Fault d=12VDC #2 Fault e=8VDC #2 Fault f=5VDC #2 Fault g=REF LD Fault h=IFLO A Fault i=RFLO A Fault j=TEMP A Fault k=IFLO B Fault l=RFLO B Fault m=TEMP B Fault</td>
</tr>
</tbody>
</table>

8.3.6 CCS (Concise Configuration Status)

Query only. Use “CCS” to return a summarized version of the RCS query.

<table>
<thead>
<tr>
<th>Controller-to-Target Instruction Code and Qualifier</th>
<th>Arguments for Command or Response to Query</th>
<th>Description of Arguments</th>
<th>Target-to-Controller Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command</td>
<td>Query</td>
<td>52 bytes, numeric</td>
<td>Returns status info in the form “CCS_aaaaa.aabbb.bbbcd.defgg.gghhi.jikjmmnno.pqppqqrs[cr][lf]” where: aaaa.aaa=Conv A frequency in MHz bb.bb=Conv A attenuation in dB cc.conv A mute state (0=unmuted, 1=muted) d.d=Conv A slope adjustment level e=Conv A online/offline (redundancy) ffff.ff=Conv B frequency in MHz gg.gg=Conv B attenuation in dB hh.conv B mute state (0=unmuted, 1=muted) ii.i=Conv B slope adjustment level jj=Conv B online/offline (redundancy) kk=Converter redundancy mode ll=auto fault recovery (1=auto, 0=manual) mm=External Ref present (0=none, 1=present) nn=Internal Ref Osc adjustment level (000-255) oo=remote mode (1=remote, 0=local) pp=remote interface (0=EIA-232, 1=EIA-485) qqqq=remote address (0001-9999) rr=remote baud rate (0=38400, 1=19200, 2=9600, 3=4800, 4=2400, 5=1200) ss=remote data format (0=8N1, 1=7E2, 2=702)</td>
</tr>
</tbody>
</table>
8.3.7 CMM (Configure Mute Mode)

Command or Query. Use “CMM” to set or return the mute mode.

<table>
<thead>
<tr>
<th>Controller-to-Target Instruction Code and Qualifier</th>
<th>Arguments for Command or Response to</th>
<th>Description of Arguments</th>
<th>Target-to-Controller Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command CMM_y_xxx</td>
<td>Query CMM_y_</td>
<td>5 bytes, alphabetic</td>
<td>Set or return in the form CMM_y_xxx where: y=A (Conv A) or B (Conv B) x=x=ON (mute) or OFF (unmute)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CMM_y_xxx</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CMM_y_xxx</td>
</tr>
</tbody>
</table>

Command Example: `<0001/CMM_A_OFF{cr} (Unmutes Converter A)

8.3.8 CMS (Concise Maintenance Status)

Query only. Use “CMS” to return a summarized version of the maintenance status.

<table>
<thead>
<tr>
<th>Controller-to-Target Instruction Code and Qualifier</th>
<th>Arguments for Command or Response to</th>
<th>Description of Arguments</th>
<th>Target-to-Controller Response</th>
</tr>
</thead>
</table>
| Command N/A | Query CMS_ | 85 bytes, numeric | Returns status info in the form: "CMS_aaa.abb.bcc.cddd.deee.ffe.fgg.ghh.hii
jjkk.kkk.lli.mmm.nnnoo.opp.pqqq.q{cr}{lf}" where:
aaa.a=12 VDC supply #1 in volts
bbb.b=8 VDC supply #1 in volts
ccc.c=5 VDC supply #1 in volts
ddd.d=12 VDC supply #2 in volts
eee.e=8 VDC supply #2 in volts
fff.f= 5 VDC supply #2 in volts
ggg.g=Ref Osc tuning in volts
hhh.h=Converter A IFLO tuning in volts
iii.i= Converter A RFLO tuning in volts
jjj.j=Converter A Input Power in dBm (Reserved for future use)
kkk.k=Converter A Output Power in dBm (Reserved for future use)
lll.l= Converter A temperature in degrees C
mmmm.m=Converter B IFLO tuning voltage in volts
nnn.n= Converter B RFLO tuning voltage in volts
ooo.o=Converter B Input Power in dBm (Reserved for future use)
pqqq.q=Converter B Output Power in dBm (Reserved for future use)
qqqq.q=Converter B temperature in degrees C |
| | | | N/A |
| | | | CMS_a...q |

8-11
8.3.9 CUS (Concise Utility Status)

Query only. Use “CUS” to return a summarized version of the utility status.

<table>
<thead>
<tr>
<th>Controller-to-Target Instruction Code and Qualifier</th>
<th>Arguments for Command or Response to Query</th>
<th>Description of Arguments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command</td>
<td>Query</td>
<td>N/A</td>
</tr>
<tr>
<td>Target-to-Controller Response</td>
<td>Command</td>
<td>Query</td>
</tr>
</tbody>
</table>

Command Example:

```
<0001/CUS_85 {cr}
```

8.3.10 DAT (Set RTC [Real-Time Clock] Date)

Command or Query. Use “DAT” to set or return the calendar date.

<table>
<thead>
<tr>
<th>Controller-to-Target Instruction Code and Qualifier</th>
<th>Arguments for Command or Response to Query</th>
<th>Description of Arguments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command</td>
<td>Query</td>
<td>DAT_</td>
</tr>
<tr>
<td>Target-to-Controller Response</td>
<td>Command</td>
<td>Query</td>
</tr>
</tbody>
</table>

Command Example:

```
<0001/DAT_04/25/16{cr} (Sets date as April 25, 2016)
```

8.3.11 FBU (Force Backup Unit)

Command only. Use “FBU” to force switchover to the backup unit. Valid in Manual redundancy mode only.

<table>
<thead>
<tr>
<th>Controller-to-Target Instruction Code and Qualifier</th>
<th>Arguments for Command or Response to Query</th>
<th>Description of Arguments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command</td>
<td>Query</td>
<td>FBU_</td>
</tr>
<tr>
<td>Target-to-Controller Response</td>
<td>Command</td>
<td>Query</td>
</tr>
</tbody>
</table>
8.3.12 FRE (Operating Frequency)

Command or Query. Use “FRE” to set or return the operating frequency, in MHz.

<table>
<thead>
<tr>
<th>Command</th>
<th>Query</th>
<th>Arguments for Command or Response to Query</th>
<th>Description of Arguments</th>
<th>Target-to-Controller Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRE_</td>
<td>FRE_y_</td>
<td>11 bytes, alphanumeric</td>
<td>Set or return info in the form FRE_y_xxxxx.xxx where:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>y=A (Conv A) or B (Conv B)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>xxxxx.xxx=valid operating frequency, in MHz, entered in 1kHz steps.</td>
<td>FRE_</td>
</tr>
</tbody>
</table>

Note: You have the option to set the frequency, for example, to Ku-Band 14500.000 MHz, if the ‘frequency display select’ option is turned ON.

Command Example: <0001/FRE_A_00951.000{cr}

8.3.13 FRL (Fault Relay Logic)

Command or Query. Use “FRL” to set or return the fault relay logic.

<table>
<thead>
<tr>
<th>Command</th>
<th>Query</th>
<th>Arguments for Command or Response to Query</th>
<th>Description of Arguments</th>
<th>Target-to-Controller Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRL_</td>
<td>FRL_x</td>
<td>1 byte, numeric</td>
<td>Set or return info in the form FRL_x where: x=0 (Normal Logic) or 1 (Inverted Logic)</td>
<td>FRL_</td>
</tr>
</tbody>
</table>

8.3.14 FRM (Retrieve Firmware Number)

Query only. For use with current (Ethernet-ready) versions of the LBC-4000. Returns the firmware information for the unit.

<table>
<thead>
<tr>
<th>Controller-to-Target Instruction Code and Qualifier</th>
<th>Arguments for Command or Response to Query</th>
<th>Description of Arguments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command N/A Query FRM_ 0 bytes</td>
<td>Returns the current unit firmware info in the form:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>"Boot: cr</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FW-0020506: X.X.X:mm/dd/yy[cr]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bulk1: cr</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FW-0020503; X.X.X:mm/dd/yy[cr]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FW-0020504; X.X.X:mm/dd/yy[cr]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FW-0020505; X.X.X:mm/dd/yy[cr]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bulk2: cr</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FW-0020503; X.X.X:mm/dd/yy[cr]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FW-0020504; X.X.X:mm/dd/yy[cr]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FW-0020505; X.X.X:mm/dd/yy[cr][if]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>where:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>X.X.X is the Firmware Version Number, and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mm/dd/yy is the release date.</td>
<td></td>
</tr>
</tbody>
</table>

Target-to-Controller Response

| Command N/A Query FRL_x |

8.3.15 FRW (Retrieve Legacy Firmware Number)

Query only. For use with legacy (non-Ethernet) versions of the LBC-4000. Returns the firmware information for the unit.

<table>
<thead>
<tr>
<th>Controller-to-Target Instruction Code and Qualifier</th>
<th>Arguments for Command or Response to Query</th>
<th>Description of Arguments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command N/A Query FRM_ 0 bytes</td>
<td>Returns the legacy unit firmware info in the form:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>"BULK=FW/9965X[cr]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M&C=FW/9966X[cr]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FPGA=FW/9967X[cr][if]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>where:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>"X" denotes the Firmware Revision Letter)</td>
<td></td>
</tr>
</tbody>
</table>

Target-to-Controller Response

| Command N/A Query FRL_x |
8.3.16 IMG (Select Boot Image)

Command or Query. Set or return the firmware image to boot from at startup.

<table>
<thead>
<tr>
<th>Controller-to-Target Instruction Code and Qualifier</th>
<th>Arguments for Command or Response to Query</th>
<th>Description of Arguments</th>
<th>Target-to-Controller Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMG_ IMG_</td>
<td>1 byte, numeric, 1 or 2</td>
<td>Set or return in the form IMG_x where: x=1 (Bulk Image 1) or 2 (Bulk Image 2)</td>
<td>IMG_ IMG_x</td>
</tr>
</tbody>
</table>

8.3.17 IPA (Management IP Address)

Command or Query. Set or return the Management IP Address for the ’10/100 ETHERNET’ port.

<table>
<thead>
<tr>
<th>Controller-to-Target Instruction Code and Qualifier</th>
<th>Arguments for Command or Response to Query</th>
<th>Description of Arguments</th>
<th>Target-to-Controller Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPA_ IPA_</td>
<td>18 bytes, numeric</td>
<td>Set or return in the form IPA_aaa.bbb.ccc.ddd.yy where: aaa.bbb.ccc.ddd=IP Address where: aaa=0-223 bbb=0-255 ccc=0-255 ddd=0-255 yy=network prefix (08-30)</td>
<td>IPA_ IPA_aaa.bbb.ccc.ddd.yy</td>
</tr>
</tbody>
</table>

8.3.18 IPG (Gateway IP Address)

Command or Query. Set or return the Gateway IP Address for the ’10/100 ETHERNET’ port.

<table>
<thead>
<tr>
<th>Controller-to-Target Instruction Code and Qualifier</th>
<th>Arguments for Command or Response to Query</th>
<th>Description of Arguments</th>
<th>Target-to-Controller Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPG_ IPG_</td>
<td>16 bytes, numeric</td>
<td>Set or return in the form IPG_aaa.bbb.ccc.ddd where: aaa.bbb.ccc.ddd=IP Address where: aaa=0-223 bbb=0-255 ccc=0-255 ddd=0-255</td>
<td>IPG_ IPG_aaa.bbb.ccc.ddd</td>
</tr>
</tbody>
</table>
8.3.19 LAA (List All Alarms)

Query only. Use “LAA” to return the list of stored alarms.

<table>
<thead>
<tr>
<th>Controller-to-Target Instruction Code and Qualifier</th>
<th>Arguments for Command or Response to Query</th>
<th>Description of Arguments</th>
<th>Target-to-Controller Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command</td>
<td>Query</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N/A</td>
<td>LAA_</td>
<td>Varies</td>
<td>Return stored alarms in the form: \nx yyyyyyyyyy hh:mm:ss mm/dd/yy{cr} \nxx yyyyyyyyyy hh:mm:ss mm/dd/yy{cr} \nxx yyyyyyyyyy hh:mm:ss mm/dd/yy{cr} \nwhere: \nx=stored fault number \nyyyyyyyyyy=fault description \nhh:mm:ss=fault time \nmm/dd/yy=fault date</td>
</tr>
</tbody>
</table>

8.3.20 LRS (Local or Remote State)

Command or Query. Use “LRS” to set or return the unit operating mode.

<table>
<thead>
<tr>
<th>Controller-to-Target Instruction Code and Qualifier</th>
<th>Arguments for Command or Response to Query</th>
<th>Description of Arguments</th>
<th>Target-to-Controller Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command</td>
<td>Query</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LRS_</td>
<td>LRS_</td>
<td>1 byte, numeric, 0 to 3</td>
<td>Set or return in the form LRS_x where: \nx= 0 (Local), 1 (Serial Remote EIA-232/485), 2 (Ethernet Remote), or 3 (Ethernet+Serial Remote)</td>
</tr>
</tbody>
</table>

8.3.21 MAC (Retrieve Unit MAC Address)

Query only. Returns the factory-assigned MAC address for the unit, in hexadecimal.

<table>
<thead>
<tr>
<th>Controller-to-Target Instruction Code and Qualifier</th>
<th>Arguments for Command or Response to Query</th>
<th>Description of Arguments</th>
<th>Target-to-Controller Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command</td>
<td>Query</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N/A</td>
<td>MAC_</td>
<td>12 bytes, alphanumeric</td>
<td>Return in the form LRS_x where: \nx= 0 (Local), 1 (Serial Remote EIA-232/485), 2 (Ethernet Remote), or 3 (Ethernet+Serial Remote)</td>
</tr>
</tbody>
</table>

Query Response Example: >0001/MAC_0006B00001C2{cr}{lf}
8.3.22 MUT (Mute State)

Command or Query. Use “MUT” to mute or unmute the specified module.

<table>
<thead>
<tr>
<th>Controller-to-Target Instruction Code and Qualifier</th>
<th>Arguments for Command or Response to Query</th>
<th>Description of Arguments</th>
<th>Target-to-Controller Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command</td>
<td>Query</td>
<td>5 bytes, alphabetic</td>
<td>Set or return in the form MUT_y_xxx where: y=A (Conv A) or B (Conv B) xxx=ON (mute) or OFF (unmute)</td>
</tr>
<tr>
<td>MUT_</td>
<td>MUT_y_</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8.3.23 ONL (Online State)

Query only. Use “ONL” to return which converter (slot) is ONLINE.

<table>
<thead>
<tr>
<th>Controller-to-Target Instruction Code and Qualifier</th>
<th>Arguments for Command or Response to Query</th>
<th>Description of Arguments</th>
<th>Target-to-Controller Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command</td>
<td>Query</td>
<td>1 byte, alphabetic</td>
<td>Return in the form ONL_y where: y=A (Conv A) or B (Conv B)</td>
</tr>
<tr>
<td>N/A</td>
<td>ONL_</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8.3.24 PNM (Retrieve Part Number)

Query only. Returns the factory-assigned Comtech EF Data part number for the Unit, Conv A, or Conv B.

<table>
<thead>
<tr>
<th>Controller-to-Target Instruction Code and Qualifier</th>
<th>Arguments for Command or Response to Query</th>
<th>Description of Arguments</th>
<th>Target-to-Controller Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command</td>
<td>Query</td>
<td>1 byte, alphabetic</td>
<td>Return in the form PNM_y_x where: y=U (Unit), A (Conv A) or B (Conv B)</td>
</tr>
<tr>
<td>N/A</td>
<td>PNM_y_</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Query Examples:
- `<0001/PNM_U_{cr}` (Returns the Unit part number)
- `<0001/PNM_A_{cr}` (Returns the Conv A part number)
- `<0001/PNM_B_{cr}` (Returns the Conv B part number)

Note: This number is the DOTCODE at the time the part was manufactured. The DOTCODE may be up to 96 printable ASCII characters long.
8.3.25 RAS (Retrieve Alarm Status)

Query only. Use “RAS” to return the alarm status for the unit.

<table>
<thead>
<tr>
<th>Controller-to-Target Instruction Code and Qualifier</th>
<th>Arguments for Command or Response to Query</th>
<th>Description of Arguments</th>
<th>Target-to-Controller Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command/Query</td>
<td></td>
<td></td>
<td>N/A RAS_x...x</td>
</tr>
<tr>
<td>N/A RAS_</td>
<td>122 bytes, alphanumeric</td>
<td>Return the detailed alarm status, where xx=OK (NO FAULT) or FT (FAULT): 12VDC1_xx(cr) 12VDC #1 Fault 08VDC1_xx(cr) 8VDC #1 Fault 05VDC1_xx(cr) 5VDC #1 Fault 12VDC2_xx(cr) 12VDC #2 Fault 08VDC2_xx(cr) 8VDC #2 Fault 05VDC2_xx(cr) 5VDC #2 Fault REFLD_xx(cr) Ref Osc Lock Detect Fault* IFOA_xx(cr) Conv A IFLO Lock Detect Fault RFOA_xx(cr) Conv A RFLO Lock Detect Fault TEMPA_xx(cr) Conv A Over Temperature Fault IFLOB_xx(cr) Conv B IFLO Lock Detect Fault RFLB_xx(cr) Conv B RFLO Lock Detect Fault TEMPB_xx(cr) Conv B Over Temperature Fault</td>
<td></td>
</tr>
</tbody>
</table>

*Note: “REFLD” is returned only when an external reference is present.

8.3.26 RCS (Retrieve Configuration Status)

Query only. Use “RCS” to return the configuration status for the unit.

<table>
<thead>
<tr>
<th>Controller-to-Target Instruction Code and Qualifier</th>
<th>Arguments for Command or Response to Query</th>
<th>Description of Arguments</th>
<th>Target-to-Controller Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command/Query</td>
<td></td>
<td></td>
<td>N/A RCS_F...X</td>
</tr>
<tr>
<td>N/A RCS_</td>
<td>186 bytes, alphanumeric</td>
<td>Return the detailed configuration status for the unit: FRE_A_xxxxx.xxx Conv A frequency ATT_A_xx.xx Conv A attenuation TX_A_yyy Conv A mute state SLP_A_x.x Conv A slope adjustment ONL_A_yyy Conv A Online/Offline FRE_B_xxxxx.xxx Conv B frequency ATT_B_xx.xx Conv B attenuation TX_B_yyy Conv B mute state SLP_B_x.x Conv B slope adjustment ONL_B_yyy Conv B Online/Offline RED_yyy Conv Redundancy ON/OFF AFR_yyy Auto Fault Recovery ON/OFF EXT_yyy External Reference YES/NO REF_xxx Ref Osc Adjustment REM_yyy Remote Mode YES/NO COMM_RS_xxx Remote Interface RS-232/RS-485 ADDR_xxx Remote Address 0001-9999 BR_yyy Remote Baud Rate FMT_X-X-X Remote Data Format</td>
<td></td>
</tr>
</tbody>
</table>
8.3.27 RED (Redundancy Mode)

Command or query. Use “RED” to set or return the active redundancy mode.

<table>
<thead>
<tr>
<th>Controller-to-Target Instruction Code and Qualifier</th>
<th>Arguments for Command or Response to Query</th>
<th>Description of Arguments</th>
<th>Target-to-Controller Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>RED_</td>
<td>RED_</td>
<td>3 bytes, alphabetic</td>
<td>Set or return in the form RED_yyy where: yyy=ON (Redundancy is enabled) or OFF (Redundancy is disabled)</td>
</tr>
</tbody>
</table>

8.3.28 REM (Remote Mode)

Command or Query. Use “REM” to set or return the active operating mode as Local or Remote.

<table>
<thead>
<tr>
<th>Controller-to-Target Instruction Code and Qualifier</th>
<th>Arguments for Command or Response to Query</th>
<th>Description of Arguments</th>
<th>Target-to-Controller Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>REM_</td>
<td>REM_</td>
<td>1 bytes, numeric, 0 or 1</td>
<td>Set or return in the form REM_x where: x=0 (Local Mode) or 1 (Remote Mode)</td>
</tr>
</tbody>
</table>

Command Example: <0001/REM_1{cr} (sets operation to Remote Mode)

8.3.29 RET (Retrieve Equipment Type)

Query only. Use “RET” without an argument to return the model number and firmware version of the unit.

<table>
<thead>
<tr>
<th>Controller-to-Target Instruction Code and Qualifier</th>
<th>Arguments for Command or Response to Query</th>
<th>Description of Arguments</th>
<th>Target-to-Controller Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>RET_</td>
<td>22 bytes, alphanumeric</td>
<td>Query, when used without argument, returns a string in the form RET_LBC-4000_VER:X.X.X where: X.X.X=Firmware Version Number</td>
</tr>
</tbody>
</table>

Query Example:

```
<0001/RET_{cr}
>0001/RET_LBC-4000_VER:1.2.5{cr}{lf}
```
8.3.30 RET_y_ (Retrieve Module Type)

Query only. Use “RET” with an argument to return the operating frequency and function (i.e., up/down) of the selected module.

<table>
<thead>
<tr>
<th>Controller-to-Target Instruction Code and Qualifier</th>
<th>Arguments for Command or Response to Query</th>
<th>Description of Arguments</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>RET_y_</td>
<td>12 bytes, alphanumeric</td>
</tr>
</tbody>
</table>

Query, when used with argument y, where:
y=A (Conv A) or B (Conv B)
returns a string in the form RET_y_xxx_ZZ where:
xxx=Frequency of selected module (070 or 140)
ZZ=UL (Uplink) or DL (Downlink)

Query Examples:

<0001/RET_A_{cr}>
>0001/RET_A_140_DL{cr}{lf}

<0001/RET_B_{CR}>
>0001/RET_B_070_UL{cr}{lf}

8.3.31 RMS (Retrieve Maintenance Status)

Query only. Use “RMS” to return the maintenance status of the unit.

<table>
<thead>
<tr>
<th>Controller-to-Target Instruction Code and Qualifier</th>
<th>Arguments for Command or Response to Query</th>
<th>Description of Arguments</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>RMS_</td>
<td>203 bytes, alphanumeric</td>
</tr>
</tbody>
</table>

Returns detailed maintenance status for the unit:
12VT1=xxx.x{cr} 12V DC Supply #1 in volts
08VT1=xxx.x{cr} 8V DC Supply #1 in volts
05VT1=xxx.x{cr} 5V DC Supply #1 in volts
12VT2=xxx.x{cr} 12V DC Supply #2 in volts
08VT2=xxx.x{cr} 8V DC Supply #2 in volts
05VT2=xxx.x{cr} 5V DC Supply #2 in volts
VTREF=xxx.x{cr} Ref Osc tuning in volts
IFLOA=xxx.x{cr} Conv A IFLO tuning in volts
RFLOA=xxx.x{cr} Conv A RFLO tuning in volts
PIN_A=xxx.x{cr} Conv A Input power in dBm
POUTA=xxx.x{cr} Conv A Output power in dBm
TEMPA=xxx.x{cr} Conv A temperature in deg C
IFLOB=xxx.x{cr} Conv B IFLO tuning in volts
RFLOB=xxx.x{cr} Conv B RFLO tuning in volts
PIN_B=xxx.x{cr} Conv B Input power in dBm
POUTB=xxx.x{cr} Conv B Output power in dBm
TEMPB=xxx.x{cr} Conv B temperature in deg C
8.3.32 RUS (Retrieve Utility Status)

Legacy Query only. Use “RUS” to return the operating utility features for the unit.

<table>
<thead>
<tr>
<th>Controller-to-Target Instruction Code and Qualifier</th>
<th>Arguments for Command or Response to Query</th>
<th>Description of Arguments</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>RUS_</td>
<td>98 bytes, alphanumeric</td>
</tr>
</tbody>
</table>

Target-to-Controller Response

<table>
<thead>
<tr>
<th>Command</th>
<th>Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>RUS_x_x</td>
</tr>
</tbody>
</table>

8.3.33 SAM (Set Auto/Manual Switching Mode)

Command or Query. Use “SAM” to set or return the operating redundancy switching mode as Automatic or Manual.

<table>
<thead>
<tr>
<th>Controller-to-Target Instruction Code and Qualifier</th>
<th>Arguments for Command or Response to Query</th>
<th>Description of Arguments</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAM_</td>
<td>SAM_</td>
<td>1 byte, alphabetic</td>
</tr>
</tbody>
</table>

Target-to-Controller Response

<table>
<thead>
<tr>
<th>Command</th>
<th>Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAM_</td>
<td>SAM_x</td>
</tr>
</tbody>
</table>

Command Example: <0001/SAM_M{cr}

8.3.34 SAS (Summary Alarm Status)

Query only. Use “SAS” to return the status of the Summary Fault Relay.

<table>
<thead>
<tr>
<th>Controller-to-Target Instruction Code and Qualifier</th>
<th>Arguments for Command or Response to Query</th>
<th>Description of Arguments</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>SAS_</td>
<td>2 bytes, alphabetic</td>
</tr>
</tbody>
</table>

Target-to-Controller Response

<table>
<thead>
<tr>
<th>Command</th>
<th>Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>SAM_x</td>
</tr>
</tbody>
</table>
8.3.35 SBR (Remote Baud Rate)

Command or Query. Use “SBR” to set or return the serial baud rate of the unit.

<table>
<thead>
<tr>
<th>Controller-to-Target Instruction Code and Qualifier</th>
<th>Arguments for Command or Response to Query</th>
<th>Description of Arguments</th>
<th>Target-to-Controller Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBR_ SBR_</td>
<td>4 bytes, alphanumeric</td>
<td>Set or return in the form SBR_xxxx where: xxxx=remote baud rate where: 1200=1200 baud 2400=2400 baud 4800=4800 baud 9600=9600 baud 19K2=19200 baud 38K4=38400 baud</td>
<td>SBR_ SBR_xxxx</td>
</tr>
</tbody>
</table>

Command Example: <0001/SBR_38K4{cr} (sets baud rate to 38400 baud)

8.3.36 SPA (Set Physical Address)

Command or Query. Use “SPA” to set or return the physical remote device address for the unit.

<table>
<thead>
<tr>
<th>Controller-to-Target Instruction Code and Qualifier</th>
<th>Arguments for Command or Response to Query</th>
<th>Description of Arguments</th>
<th>Target-to-Controller Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPA_ SPA_</td>
<td>4 bytes, numeric</td>
<td>Set or return in the form SPA_xxxx where: xxxx=Physical Address from 0001 to 9999 (Resolution=0001)</td>
<td>SPA_ SPA_xxxx</td>
</tr>
</tbody>
</table>

Command Example: <0001/SPA_0412{cr} (sets physical device address to 0412)

8.3.37 SPI (Spectral Inversion)

Command or Query. Use “SPI” to set or return the Spectral Inversion for the selected module.

<table>
<thead>
<tr>
<th>Controller-to-Target Instruction Code and Qualifier</th>
<th>Arguments for Command or Response to Query</th>
<th>Description of Arguments</th>
<th>Target-to-Controller Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPI_ SPI_</td>
<td>5 bytes, numeric</td>
<td>Set or return in the form SPI_y_xxx where: y=A (Conv A) or B (Conv B) xxx=NRM (Normal spectrum) or INV (Inverted spectrum)</td>
<td>SPI_ SPI_y_xxx</td>
</tr>
</tbody>
</table>

Command Example: <0001/SPI_A_INV{cr} (Set Conv A to Inverted spectrum)
8.3.38 **SRO (Reference Oscillator Adjustment)**

Command or Query. Use “SRO” to set or return the reference oscillator adjustment level.

<table>
<thead>
<tr>
<th>Controller-to-Target Instruction Code and Qualifier</th>
<th>Arguments for Command or Response to Query</th>
<th>Description of Arguments</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRO_ Command</td>
<td>SRO_ 3 bytes, numeric</td>
<td>Set or return in the form SRO_xxx where: xxx=value from 000 to 255 (Resolution=001).</td>
</tr>
<tr>
<td>SRO_ Query</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: This command is not valid (SRO cannot be adjusted) when the unit is locked to an external reference source.

8.3.39 **SSA (Slope Adjustment Level)**

Command or Query. Use “SSA” to set or return the converter slope adjustment level.

<table>
<thead>
<tr>
<th>Controller-to-Target Instruction Code and Qualifier</th>
<th>Arguments for Command or Response to Query</th>
<th>Description of Arguments</th>
</tr>
</thead>
</table>
| SSA_ Command | SSA_ 5 bytes, alphanumeric | Set or return in the form SSA_y_x.x where:
y=A (Conv A) or B (Conv B)
x.x=slope adjustment value from 0.1 to 1.0 in 0.1 steps |
| SSA_ Query | | |

Command Example:
`<0001/SSA_B_0.3{cr}`
(Sets Converter B slope adjustment level to 0.3)

8.3.40 **SSN (Retrieve Serial Number)**

Query only. Use “SSN” to retrieve the unit or converter factory-assigned 9-digit serial number.

<table>
<thead>
<tr>
<th>Controller-to-Target Instruction Code and Qualifier</th>
<th>Arguments for Command or Response to Query</th>
<th>Description of Arguments</th>
</tr>
</thead>
</table>
| N/A Command | SSN_y_ 9 bytes, numeric | Return in the form SSN_y_xxxxxxxxx where:
y=U (Unit), A (Conv A) or B (Conv B)
xxxxxxxxx=5-digit serial number |
| N/A Query | | |

<table>
<thead>
<tr>
<th>Target-to-Controller Response Command</th>
<th>Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRO_ Command</td>
<td>SRO_xxx</td>
</tr>
<tr>
<td>N/A</td>
<td>SSN_y_xxxxxx xxxxx</td>
</tr>
</tbody>
</table>
Query Example:
<0001/SSN_U{cr}
>0001/SSN_U_012345678{cr}{lf}

8.3.41 TIM (Set RTC [Real-Time Clock] Time)

Command or Query. Use “TIM” to set or return the real-time clock time.

<table>
<thead>
<tr>
<th>Controller-to-Target Instruction Code and Qualifier</th>
<th>Arguments for Command or Response to Query</th>
<th>Description of Arguments</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIM_</td>
<td>TIM_</td>
<td>8 bytes, numeric</td>
</tr>
<tr>
<td>Target-to-Controller Response</td>
<td>Command</td>
<td>Query</td>
</tr>
<tr>
<td>TIM_</td>
<td>TIM_hh:mm:ss</td>
<td></td>
</tr>
</tbody>
</table>

Command Example:
<0001/TIM_23:12:59{cr}
(Sets time from midnight to 23 hours, 12 minutes, 59 seconds, or 11:12:59 PM)

8.3.42 VFD (Set Vacuum Fluorescent Display Brightness)

Command or Query. Use “VFD” to set or return the brightness level for the front panel display.

<table>
<thead>
<tr>
<th>Controller-to-Target Instruction Code and Qualifier</th>
<th>Arguments for Command or Response to Query</th>
<th>Description of Arguments</th>
</tr>
</thead>
<tbody>
<tr>
<td>VFD_</td>
<td>VFD_</td>
<td>1 byte, numeric, value 0 to 3</td>
</tr>
<tr>
<td>Target-to-Controller Response</td>
<td>Command</td>
<td>Query</td>
</tr>
<tr>
<td>VFD_</td>
<td>VFD_x</td>
<td></td>
</tr>
</tbody>
</table>
Appendix A. UP/DOWN CONVERTER IDU MODULE REMOVAL/RE-INSTALLATION

A.1 Overview

This appendix illustrates the procedure required to remove and re-install an IDU module for the LBC-4000 Up/Down Converter System into any LBC-4000 chassis (Figure A-1 shows a legacy serial-only chassis with the top cover removed for clarity). This procedure is typical for removing or installing a module into the LBC-4000’s applicable Conv A or Conv B bay.

While Figure A-1 shows the legacy chassis (LBC-4000 L-Band Up/Down Converter System without Ethernet), the procedures in this appendix apply identically to the Ethernet-based LBC-4000.

Figure A-1. LBC-4000 Chassis – IDU Module Bays
A.2 IDU Module Removal Procedure

Do these steps:

<table>
<thead>
<tr>
<th>Step</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Loosen the front panel thumbscrews (by turning counterclockwise), and drop the front panel to access the IDU modules.</td>
</tr>
<tr>
<td>2</td>
<td>Use a Phillip’s®-head screwdriver to loosen (by turning counterclockwise) the captive machine screws holding the IDU module in place.</td>
</tr>
<tr>
<td>Step</td>
<td>Task</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>3</td>
<td>Remove the Reference Cable: Unlock (by turning counterclockwise), and then remove the connector from its socket.</td>
</tr>
<tr>
<td>4</td>
<td>Remove the Ribbon (Data) Cable: Unlock, and then remove, the ribbon cable connector from its socket.</td>
</tr>
</tbody>
</table>

(a) Unlock Connector
(b) Remove Connector
Step	Task
5 | Remove the IDU module from the chassis: Use the module front handle to slide it straight out until it is free and clear of its internal chassis guides.
A.3 IDU Module Re-Installation Procedure

Do these steps:

<table>
<thead>
<tr>
<th>Step</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Install the replacement IDU module. Make sure to engage the module guide rails within the chassis. Then, use the module front handle to slide the module into a position that allows you to connect the Reference Cable and the Ribbon (Data) Cable.</td>
</tr>
<tr>
<td>2</td>
<td>Connect the Ribbon (Data) Cable: Insert, and then lock, the ribbon cable connector into its socket.</td>
</tr>
</tbody>
</table>

(a) Install Connector
(b) Lock Connector
3. Connect the Reference Cable: Install the cable connector onto the socket, and then lock the cable into operating position (by turning clockwise).

4. Install the IDU module into the chassis: Use the module front handle to push it straight in until it is fully engaged inside its internal housing.
Secure the module in place: Use a Phillip’s®-head screwdriver to tighten (by turning clockwise) the captive machine screws.

Swing the front panel back into operating position and finger-tighten the three thumbscrews (by turning clockwise).

The IDU module installation is complete and the LBC-4000 L-Band Up/Down Converter System is now ready for connection to other equipment. See Chapter 4. REAR PANEL CONNECTIONS for further information.
Notes:
Appendix B. REDUNDANCY OPERATION

B.1 Overview

The redundancy hardware option is required for use of the LBC-4000 L-Band Up/Down Converter System in 1:1 redundant operations.

You may optionally configure the LBC-4000 for redundant system operation. This appendix provides detailed information for cabling and otherwise configuring the LBC-4000 for 1:1 redundancy.

Figure B-1 provides a functional schematic for LBC-4000 redundant operation.

Figure B-1. LBC-4000 Redundancy – Functional Schematic

Figure B-2 illustrates the cabling requirements for redundant operation. Note the following:
• BNC connections, where applicable, use 50Ω BNC male-to-male cables.
• Comtech EF Data recommends that all Type ‘N’ to Type ‘SMA’ cable connections are best accomplished using a Type ‘N’ male to Type ‘SMA’ female adapter, then using Type ‘SMA’ female-to-female cables.

Figure B-2. LBC-4000 Rear Panel – Redundancy Cabling Schematic

See Sect. B.2 for LBC-4000 Redundancy System configuration, monitor and control using the LBC-4000 front panel.

See Sect. B.3 for LBC-4000 Redundancy System configuration, monitor and control using the LBC-4000 HTTP (Web Server) Interface.

See Sect. B.4 for LBC-4000 Redundancy System configuration, monitor and control using the serial remote interface.

B.2 LBC-4000 Front Panel Operations

Figure B-3 identifies the key features of the LBC-4000 front panel. You can configure, monitor, and control redundancy operation using the keypad and display. Nested menus are used, which display all available options, and prompt you to carry out a required action. See Chapter 6. FRONT PANEL OPERATION for in-depth explanations of the function and operation of this operational interface.
Figure B-3. LBC-4000 Front Panel

Item 1 – Rack Handles
These handles ease removal and replacement of the chassis into the user-provided rack enclosure.

Item 2 – Available Power Switch
Use this switch, when installed, to turn power to the unit on or off.

Item 3 – LED Indicators
The operational state of the LBC-4000 is represented by two sets of five front panel Light-Emitting Diode (LED) indicators – one set each for ‘CONV A’ and ‘CONV B’.

Item 4 – Vacuum Fluorescent Display (VFD)
The VFD is an active display showing two lines of 24 characters each. It produces a blue light with adjustable brightness. Nested menus display all available options and prompt you to carry out a required action.

Item 5 – Keypad
The keypad comprises six keyswitches behind a flat membrane. The keys have a positive ‘click’ action that provides tactile feedback. Enter data via the keypad. Data, prompts, and messages are displayed on the VFD.

Item 6 – ‘CONV A’ IDU Module Bay
Item 7 – ‘CONV B’ IDU Module Bay
Each bay accepts one Up Converter or Down Converter IDU Module.
B.2.1 Using the Front Panel Menus

Chapter 6. FRONT PANEL OPERATION

B.2.1.1 Main Menu

The Main Menu for the LBC-4000 appears as follows:

```
CONFIG  MONITOR  FAULTS
UTILITY
```

Use the [◄][►] keys to move the cursor to the desired choice. Press [ENT]. The function of each menu branch is as follows:

- **CONFIG (Configuration) Menu Branch** – These screens provide selections for the full LBC-4000 operations. SEE SECT. B.2.1.2 TO USE THIS MENU BRANCH IN REDUNDANCY OPERATIONS.
- **MONITOR Menu Branch** – These screens provide real-time monitoring of system voltages, unit temperature, IFLO tuning, and reference oscillator tuning.
- **FAULTS Menu Branch** – The converter displays up to 100 faults, date and time stamped and stored in memory as they occur.
- **UTILITY Menu Branch** – These screens permit you to configure such system functions as the Real-Time Clock, VFD brightness, unit AID, screen saver theme, and the firmware image loading preferences.

B.2.1.2 CONFIG (Configuration) Menu

```
CONV-A  CONV-B  REMOTE
REUNDADJ SPECT-INV
```

Use the [◄][►] arrow keys to move the cursor to the desired choice. Press [ENT]. The function of each CONFIG submenu is as follows:

- **CONV-A, CONV-B Submenus** – Displays the current configuration of the selected converter, including the frequency, attenuation, and slope.
- **REMOTE Submenu** – The selections here allow you to select whether you control the unit locally or remotely, set the unit address, the interface type, and the operating parameters for that interface.
• **REDUND** Submenu – The selections here allow you to identify the redundancy state and mode. *SEE SECT. B.2.1.3 TO USE THIS SUBMENU IN REDUNDANCY OPERATIONS.*

• **REFADJ** Submenu – This screen allows you to adjust the reference oscillator.

• **SPECT-INV** Submenu – The selections here allow you to set the Converter A and Converter B spectral inversion to INVERTED or NORMAL.

B.2.1.3 (CONFIG:) REDUND (Redundancy)

<table>
<thead>
<tr>
<th>Mode</th>
<th>State</th>
<th>FrcBkup</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Use the [←][→] arrow keys to select **Mode**, **State**, or **F up**. Press [ENT].

(CONFIG:) Redundancy → Mode

<table>
<thead>
<tr>
<th>Redundancy:</th>
<th>Control Mode = Manual</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Use the [↑][↓] arrow keys to select **Manual** or **Auto**. Press [ENT].

Note that, if you attempt to access this menu and the **Redundancy State** is **Disabled**, you will see this message:

<table>
<thead>
<tr>
<th>Not Available In Current Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

(CONFIG:) Redundancy → State

<table>
<thead>
<tr>
<th>Redundancy Mode:</th>
<th>Control State = Enable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Use the [↑][↓] arrow keys to select **Disable** or **Enable**. Press [ENT].

(CONFIG:) Redundancy → FrcBkup

<table>
<thead>
<tr>
<th>Config Manual Redundancy Force Backup</th>
<th>NO</th>
</tr>
</thead>
</table>
To force the redundant unit into standby mode, use the [↑][↓] arrow keys to select YES or NO. Press [ENT].

Note that, if you attempt to access this menu and the Redundancy State is Disabled, you will see this message:

Not Available in Current Mode

B.2.1.4 Gain Offset for Redundant Operations

Once you enable redundancy operation, you must use the Ofst (Gain Offset) command to define the gain offset compensation in order to match gain between the two converters.

Gain Offset is configured at installation and initial setup only. You should use the normal attenuation functions during normal operations.

To set the Gain Offset parameters for redundant operation, do these steps:
1. Monitor the output signal level on power meter / spectrum analyzer.
2. Enable Redundancy on the converter (SELECT:CONFIG ➔ REDUND ➔ STATE=Enable).
4. Force Converter B online (SELECT:CONFIG ➔ REDUND ➔ FrcBkup=YES). Then, measure the output.
5. Force Converter A online (SELECT: CONFIG ➔ REDUND ➔ FrcBkup=YES). Then, adjust the Gain Offset. Using the SELECT: CONFIG ➔ Conv-A ➔ ATTEN/SLOPE submenu:

 CONFIG CnvA Ofst=+0.0dB
 Atten=20.00dB Slope=0.0

 a. Use the [↑][↓] arrow keys to select the Gain Offset (Ofst=) digit to edit, and then use the [↑][↓] arrow keys to change that value.
 b. Once the Gain Offset output value matches Converter B, press [ENT].
6. Repeat Steps 4 and 5 until the output levels track.
7. Return unit to the desired redundancy state.
B.3 Redundancy Operations Using the LBC-4000 HTTP Interface

Use the LBC-4000 HTTP Interface ‘Config | Redundancy’ page to configure the LBC-4000’s Redundancy Switch Mode.

Figure B-4. ‘Config | Redundancy’ page

Click [Refresh] to update the page with its latest operating parameters.

Redundancy State

Use the drop-down menu to Enable or Disable LBC-4000 Redundancy, and then click [Change] to set LBC-4000 Redundancy operation to this select status.

Redundancy Mode

Use the drop-down menu to select Redundancy Mode operation as Manual or Auto, and then click [Change] to update LBC-4000 Redundancy operation to this select operating mode.
Force Backup

Use the drop-down menu to select **Yes**, and then click **[Change]** to force the redundant unit into standby mode.

The last section on this page displays the **read-only Online** or **Offline** status for each converter.

B.4 Redundancy Operations Using Serial Remote Control

See **Chapter 8. SERIAL INTERFACE OPERATION** for detailed information about using serial remote control commands and queries.

The “FBU,” “RED,” and “SAM” remote commands and queries are provided for LBC-4000 redundancy operation.

B.4.1 FBU (Force Backup Unit)

Command only. Use “FBU” to force switchover to the backup unit. Valid in Manual redundancy mode only.

<table>
<thead>
<tr>
<th>Controller-to-Target Instruction Code and Qualifier</th>
<th>Arguments for Command or Response to Query</th>
<th>Description of Arguments</th>
<th>Target-to-Controller Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>FBU_</td>
<td>N/A</td>
<td>This command takes no arguments.</td>
<td>N/A</td>
</tr>
</tbody>
</table>

B.4.2 RED (Redundancy Mode)

Command or Query. Use “RED” to set or return the active redundancy mode.

<table>
<thead>
<tr>
<th>Controller-to-Target Instruction Code and Qualifier</th>
<th>Arguments for Command or Response to Query</th>
<th>Description of Arguments</th>
<th>Target-to-Controller Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>RED_</td>
<td>RED_</td>
<td>Set or return in the form RED_yyy where: yyy=ON (Redundancy is enabled) or OFF (Redundancy is disabled)</td>
<td>RED_</td>
</tr>
</tbody>
</table>
B.4.3 **SAM (Set Auto/Manual Switching Mode)**

Command or Query. Use “SAM” to set or return the operating redundancy switching mode as Automatic or Manual.

<table>
<thead>
<tr>
<th>Controller-to-Target Instruction Code and Qualifier</th>
<th>Arguments for Command or Response to Query</th>
<th>Description of Arguments</th>
<th>Target-to-Controller Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAM_</td>
<td>SAM_</td>
<td>1 byte, alphabetic</td>
<td>SAM_</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Set or return in the form SAM_x where: x=A (Automatic Switching Mode) or M (Manual Switching Mode)</td>
<td>SAM_x</td>
</tr>
</tbody>
</table>

Command Example: `<0001/SAM_M{cr}`