Overview
The CDM-570A-IPEN and the CDM-570AL-IPEN are our next generation IP-centric satellite modems with data encryption that provide industry-leading performance and flexibility in a 1 RU package at a very competitive price. With their innovative architecture and support for advanced capabilities including VersaFEC-2 high performance LDPC, VersaFEC® low latency LDPC Forward Error Correction (FEC), the revolutionary DoubleTalk® Carrier-in-Carrier® bandwidth compression, and optimized transmit filter rolloffs, the CDM-570A-IPEN and CDM-570AL-IPEN allow for efficient IP networking and transport over satellite links while supporting a wide range of applications and network topologies.

This combination of advanced technologies enables multi-dimensional optimization, allowing satellite communications users to:

- Minimize operating expenses (OPEX)
- Maximize throughput without using additional transponder resources
- Maximize availability (margin) without using additional transponder resources
- Minimize capital expenses (CAPEX) by allowing a smaller BUC/amplifier and/or antenna
- Or, a combination to meet specific business needs

The modems are available with 70/140 MHz or L-Band IF. In addition to the 10/100Base-T Ethernet traffic interface, CDM-570A/L-IPEN include serial and G.703 data interfaces to support legacy applications and assist in migrating from legacy to IP transport.

Features
- 3xDES Encryption for transport security
- Integrated high performance Packet processor with 10/100Base-T Ethernet traffic port
- Static IP routing for unicast and multicast
- Advanced Quality of Service (QoS)
- Header and payload compression for maximum efficiency
- IGMP v1 and v2
- VLAN capability with 802.1Q compliant QoS
- Support for mesh, star and hybrid network topologies
- Vipersat Management System (VMS) integration
- DoubleTalk Carrier-in-Carrier bandwidth compression with Automatic Power Control (CnC-APC)
- VersaFEC-2 High Performance LDPC
- VersaFEC low latency LDPC
- VersaFEC-2 and VersaFEC Adaptive Coding & Modulation (ACM) for point-to-point IP Circuits
- Optimized Transmit Filter Rolloff: 5%, 10%, 15%, 20%, 25% and 35%
- Data rate range from 2.4 kbps to 10.239 Mbps
- CDM-570A-IPEN: 50 to 90 or 100 to 180 MHz IF range
- CDM-570AL-IPEN: 950 to 2250 MHz IF range
- Modulation types: BPSK, QPSK, OQPSK, 8PSK/8-QAM/8-ARY, 16-QAM/16-ARY, 32-ARY
- Forward Error Correction (FEC) choices include VersaFEC-2, VersaFEC, Turbo Product Code (TPC), Viterbi, Reed-Solomon, and Trellis Coded Modulation (TCM)
- Management port: 10/100Base-T Ethernet
- Standards based management via SNMP, Web, or Telnet
- Automatic Uplink Power Control (AUPC)
- Embedded Distant-end Monitor and Control (EDMAC/EDMAC2)
- CarrierID using Comtech EF Data’s MetaCarrier® spread spectrum technology
- 1:1 Redundancy options
- CDM-570A-IPEN: FSK communications to CSAT-5060 or KST-2000A
- CDM-570AL-IPEN: 10 MHz reference for BUC, FSK communications and optional BUC power supply
- CDM-570AL-IPEN: 10 MHz reference and power supply for LNB

www.comtechefdata.com
Doubletalk Carrier-in-Carrier

DoubleTalk Carrier-in-Carrier, based on patented “Adaptive Cancellation” technology, allows transmit and receive carriers of a duplex link to share the same transponder bandwidth. DoubleTalk Carrier-in-Carrier is complementary to all advances in modem technology, including advanced FEC and modulation techniques. As these technologies approach theoretical limits of power and bandwidth efficiencies, DoubleTalk Carrier-in-Carrier utilizing advanced signal processing techniques provides a new dimension in bandwidth efficiency.

Figure 1 shows the typical full-duplex satellite link, where the two carriers are adjacent to each other.

Figure 2 shows the typical DoubleTalk Carrier-in-Carrier operation, where the two carriers are overlapping, thus sharing the same spectrum.

When observed on a spectrum analyzer, only the Composite is visible. Carrier 1 and Carrier 2 are shown in Figure 2 for reference only.

As DoubleTalk Carrier-in-Carrier allows equivalent spectral efficiency using a lower order modulation and/or code rate, it can reduce the power required to close the link thereby reducing CAPEX by allowing a smaller BUC/amplifier and/or antenna. Alternatively, DoubleTalk Carrier-in-Carrier can be used to achieve very high spectral efficiencies e.g., DoubleTalk Carrier-in-Carrier when used with 32-ARY modulation can provide bandwidth efficiency exceeding 8 bps/Hz.

When combined with VersaFEC-2 or VersaFEC and optimized transmit filter rolloffs, DoubleTalk Carrier-in-Carrier provides unprecedented savings in transponder bandwidth and power utilization. This allows for its successful deployment in bandwidth-limited and power-limited scenarios, as well as reduction in earth station BUC/amplifier power requirements.

Carrier-in-Carrier® is a Registered Trademark of Comtech EF Data
DoubleTalk® is a Registered Trademark of Raytheon Applied Signal Technology
VersaFEC® is a Registered Trademark of Comtech EF Data

Carrier-in-Carrier Automatic Power Control (CnC-APC)

The patent-pending Carrier-in-Carrier Automatic Power Control (CnC-APC) mechanism enables modems on both sides of a CnC link to automatically measure and compensate for rain fade while maintaining the Total Composite Power. In addition to automatically compensating for rain fade, CnC-APC also enables the modems to share link margin, i.e. a modem can effectively transfer excess link margin to a distant end modem experiencing fade, thereby further enhancing overall availability.

VersaFEC-2 High Performance LDPC Forward Error Correction

CDM-570A/L-IPEN now offers a new high performance LDPC FEC specifically designed to optimize performance at low to mid-tier symbol rates. VersaFEC-2 long-block provides 38 ModCods (BPSK to 32-ARY) with performance generally better than DVB-S2 at significantly lower latency and short-block provides 36 ModCods (BPSK to 32-ARY) with higher coding gain than first generation VersaFEC and similar latency. All higher order constellations are quasi-circular for optimal peak-to-average performance. ACM operation is supported for long block and short block for IP/Ethernet traffic in a point-to-point topology.

VersaFEC Forward Error Correction

VersaFEC is a patent-pending system of LDPC codes designed to provide maximum coding gain while minimizing latency. CDM-570A/L-IPEN support Constant Coding & Modulation (CCM) mode of operation for IP/Ethernet, serial or G.703 data interfaces. CDM-570A/L-IPEN support Adaptive Coding & Modulation (ACM) for IP/Ethernet traffic in a point-to-point topology.

The Ultra Low Latency (ULL) codes provide even lower latency compared to standard VersaFEC codes.

Optimized Transmit Filter Rolloffs

CDM-570A/L support 5%, 10%, 15%, 20%, 25% and 35% transmit filter rolloff allowing users to further optimize the link. Carrier-in-Carrier combined with VersaFEC and optimized transmit filter rolloffs can provide 50% or more BW savings compared to legacy modems.
CarrierID
CDM-570A/L-IPEN now incorporate a patent-pending carrier identification (CID) technique that uses Comtech EF Data’s MetaCarrier® spread spectrum technology to embed a unique carrier identification sequence for the transmitted carrier to help identify interfering carriers. CDM-570A/L-IPEN with MetaCarrier® is used in tandem with the Comtech EF Data’s MCDD-100 MetaCarrier® Detection Device to provide a complete MetaCarrier embedding and decoding solution.

High Performance Packet Processor
The high-performance Packet Processor enables efficient IP networking and transport over satellite with header compression, payload compression and advance Quality of Service. The advanced QoS combined with header and payload compression ensures the highest quality of service with minimal jitter and latency for real-time traffic, priority treatment of mission critical applications and maximum bandwidth efficiency.

The packet processor supports Routed mode as well as Managed Switch Mode of operation. In managed switch mode, it operates as a layer 2 switch with VLAN support, enabling seamless integration with existing infrastructure while providing full optimization including header compression and payload compression and advanced QoS.

The CDM-570A/L-IPEN supports a wide range of applications and network topologies.

Header Compression Option
The packet processor incorporates industry-leading header compression for IP/Ethernet traffic. In Routed mode, header compression can be enabled on a per route basis and can reduce the typical 40 byte IP/UDP/RTP header to an average of 2 bytes. For TCP/IP, the 40 byte header is reduced to an average of 4 bytes. In Managed switch mode, header compression also compresses the Ethernet header. So, a 58 byte Ethernet header with VLAN and IP/UDP/RTP header can be compressed to as little as 2 bytes.

For applications such as VoIP, header compression can provide bandwidth savings exceeding 60%. E.g. 8 kbps G.729 voice transported in an IP/UDP/RTP datagram typically requires 24 kbps in a routed network or approximately 32.4 kbps in a switched network including VLAN header and FCS. With header compression, the same voice call needs approx 9 kbps (before HDLC encapsulation) – a savings of over 60% in a routed network or over 70% in a switched network. Bandwidth requirement for typical Web/HTTP traffic is also reduced with TCP/IP header compression.

Payload Compression Option
Implemented in the hardware for maximum throughput and efficiency, payload compression can typically reduce the required satellite bandwidth by 20-30%.

Quality of Service (QoS) Option
Today’s networks have to support a wide range of applications with diverse requirements. The packet processor incorporates advanced QoS mechanism to ensure the highest service quality with minimal jitter and latency for real-time traffic, priority treatment of mission critical applications while maximizing bandwidth utilization. Four different QoS modes are available:
- DiffServ – Industry-standard method of providing QoS enabling seamless co-existence in networks that implement DiffServ.
- Max/Priority – Provides eight levels of traffic prioritization with the ability to limit maximum traffic per priority class
- Min/Max – Provides a Committed Information Rate (CIR) to each user defined class of traffic with the ability to allow a higher burstable rate depending on availability
- VLAN Priority/Max – Available in Managed switch mode when using VLANs. Uses 3-bit 802.1p VLAN priority with ability to set a maximum data rate per priority

Packet processor includes a powerful classifier capable of classifying packets based on Application/Protocol, Source IP Address/Subnet, Destination IP Address/Subnet, Source Port / Range and Destination Port / Range.

3xDES Encryption
The modems support 3xDES encryption for IP/Ethernet traffic for transmission security to prevent unauthorized access to data transmitted over the satellite link. Encryption is configurable on a per route basis. Encryption is not available if using legacy serial or G.703 data interfaces.

Vipersat Management System
- Dynamic SCPC carrier allocation & true bandwidth-on-demand
- User-defined policies for upstream carrier switching
- Star and dynamic mesh capabilities using single hop on-demand
- Guaranteed bandwidth capability

VMS Network & Bandwidth Management
A Vipersat-powered network integrates these advanced modems with a powerful network management tool, the Vipersat Management System (VMS). In addition to the traditional monitoring and control of the CDM-570A/L-IPEN modems and the demodulators, the VMS allows these devices to share bandwidth, and when needed, switch automatically to a dedicated SCPC channel. In a Vipersat-powered network, the CDM-570A/L-IPEN modem takes advantage of its fast acquisition demodulation to allow it to operate in a shared mode. Inbound transmissions (from remote to hub) can be switched from a shared Selective Time Division Multiple Access (STDMA) mode to a dedicated Single Carrier Per Channel (SCPC) connection via a variety of user defined policies or triggers. This enables the network to more effectively handle real-time connection-oriented applications and reduces both latency and network congestion. Through VMS, dynamic point-to-point mesh connections can also be established between remotes.
Upstream Switching

Through protocol classification in the remote terminals, the modem initiates automatic switching. VMS establishes dSCPC bandwidth based on policies that can be individually enabled on a per-remote basis, or globally enabled. Policies can be configured for a variety of applications such as VoIP, video (VTC), or based on a load, or via a schedule, Type of Service (ToS), or QoS rules such as IP port or IP address and protocol type. Operators are able to set minimum and maximum data rates for each remote as well as excess data rates for an initial upstream switch.

Vipersat Operation Mode

Vipersat operation is enabled via a FAST feature code. Networks can easily start off in point-to-point or point-to-multipoint configurations. As the network grows and users wish to take advantage of the bandwidth on-demand savings by implementing a Vipersat network, modems can easily be upgraded to Vipersat mode.

EDMAC & AUPC Operation

The CDM-570A-L-IPEN has the ability to monitor and control the distant end of a point-to-point satellite link using EDMAC or EDMAC2. User data is framed and bits are added to transfer control, status, and AUPC information.

Management

The modems support SNMP, web-based and command line interfaces for management. When using legacy data interfaces the modems can also be configured and monitored from the front panel, or through the remote M&C port. Ten complete RF configurations may be stored in the modem. An event log stores alarm and status information in non-volatile RAM, while the link statistics log stores link performance (Eb/No and AUPC performance) for monitoring and reporting purposes.

G.703 Clock Extension

Mobile networks require precise synchronization of base stations, which is a challenge when using IP backhaul. Most operators are forced to use GPS-based external equipment for site synchronization. CDM-570A-L-IPEN offers a G.703 clock extension option that propagates a high stability reference from hub to the remote. This process does not require additional bandwidth.

FAST Feature Enhancements

The FAST codes make it easy to upgrade the modem capability in the field. New features can be added on site, using FAST access codes purchased from Comtech EF Data that can be entered via the front panel.

Specifications

<table>
<thead>
<tr>
<th>Symbol Rate</th>
<th>4.8 kbps to 3.0 Mbps (subject to data rate range, modulation and FEC) [Please see user manual for details on supported symbol rates for different modulation and FEC]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Range</td>
<td>CDM-570A-L-IPEN: 50 to 90 or 100 to 180 MHz, 100 Hz resolution CDM-570AL-IPEN: 950 to 2250 MHz, 100 Hz resolution</td>
</tr>
</tbody>
</table>

| Data Interfaces | 10/100Base-T Ethernet EIA-422/-530 DCE, V.35 DCE, Sync EIA-232, G.703 T1 balanced, G.703 E1 balanced or unbalanced, |

<table>
<thead>
<tr>
<th>Modulation & FEC Options</th>
<th>Data Rate Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>VersaFEC (Long Block)</td>
<td>2.4 kbps to 10.239 Mbps (depending on modulation, FEC and framing), 1 bps step with fully independent TX and RX rates</td>
</tr>
<tr>
<td>BPSK 0.488</td>
<td>18.115 kbps to 1.468 Mbps (Minimum 37 ksps)</td>
</tr>
<tr>
<td>QPSK 0.489, 0.537, 0.586, 0.611, 0.635, 0.660, 0.684, 0.733</td>
<td>36.230 kbps to 4.397 Mbps (Minimum 37 ksps)</td>
</tr>
<tr>
<td>8-ARY 0.521, 0.537, 0.562, 0.586, 0.611, 0.635, 0.660, 0.684, 0.708, 0.733</td>
<td>125.081 kbps to 6.596 Mbps (Minimum 80 ksps)</td>
</tr>
<tr>
<td>16-ARY 0.586, 0.611, 0.635, 0.660, 0.684, 0.708, 0.733, 0.757, 0.782</td>
<td>234.527 kbps to 9.381 Mbps (Minimum 100 ksps)</td>
</tr>
<tr>
<td>32-ARY 0.660, 0.684, 0.708, 0.733, 0.757, 0.782, 0.801, 0.831, 0.855, 0.879</td>
<td>824.511 kbps to 10.239 Mbps (Minimum 250 ksps)</td>
</tr>
<tr>
<td>VersaFEC (Short Block)</td>
<td>16-ARY Rate 0.586, 0.611, 0.635, 0.660, 0.684, 0.708, 0.733, 0.757, 0.782</td>
</tr>
<tr>
<td>BPSK Rate 0.489</td>
<td>16-ARY Rate 0.586, 0.611, 0.635, 0.660, 0.684, 0.708, 0.733, 0.757, 0.782</td>
</tr>
<tr>
<td>QPSK 0.489, 0.537, 0.586, 0.611, 0.635, 0.660, 0.684, 0.733</td>
<td>32-ARY Rate 0.660, 0.684, 0.708, 0.733, 0.757, 0.782, 0.801, 0.831, 0.855, 0.879</td>
</tr>
<tr>
<td>8-ARY Rate 0.521, 0.537, 0.562, 0.586, 0.611, 0.635, 0.660, 0.684, 0.708, 0.733</td>
<td>16-ARY Rate 0.586, 0.611, 0.635, 0.660, 0.684, 0.708, 0.733, 0.757, 0.782</td>
</tr>
</tbody>
</table>

VersaFEC Ultra Low Latency (ULL) Codes

BPSK 0.493 (ULL)	2.4 kbps to 1.479 Mbps
QPSK 0.493 (ULL)	4.8 kbps to 2.959 Mbps
QPSK 0.654 (ULL)	6.3 kbps to 3.923 Mbps
QPSK 0.734 (ULL)	7.0 kbps to 4.405 Mbps

TPC

<p>| BPSK 5/16 | 2.4 kbps to 0.937 Mbps |
| QPSK 0.493 (ULL) | 2.4 kbps to 1.430 Mbps |
| QPSK/OPSK 21/44 | 4.8 kbps to 2.860 Mbps |
| QPSK/OPSK 3/4 | 7.2 kbps to 4.500 Mbps |
| QPSK/OPSK 7/8 | 8.4 kbps to 5.250 Mbps |
| QPSK/OPSK 0.95 | 9.1 kbps to 5.666 Mbps |
| 8PSK-5/QAM 3/4 | 10.8 kbps to 6.750 Mbps |
| 8PSK-8/QAM 7/8 | 13.6 kbps to 7.875 Mbps |
| 8PSK-8/QAM 0.95 | 15.3 kbps to 8.500 Mbps |
| 16-QAM 3/4 | 14.4 kbps to 9.000 Mbps |
| 16-QAM 7/8 | 16.8 kbps to 9.980 Mbps |</p>
<table>
<thead>
<tr>
<th>Demodulator</th>
<th>CDM-570A-IPEN</th>
<th>CDM-570AL-IPEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Stability (With Internal Reference)</td>
<td>±1 ppm, 0° to 50°C (32°F to 122°F)</td>
<td>±0.06 ppm, 0° to 50°C (32°F to 122°F)</td>
</tr>
<tr>
<td>Output Power</td>
<td>0 to −25 dBm, 0.1 dB steps</td>
<td>0 to −40 dBm, 0.1 dB steps</td>
</tr>
<tr>
<td>Accuracy</td>
<td>±0.5 dB over frequency and temperature</td>
<td>±1.0 dB over frequency and temperature</td>
</tr>
<tr>
<td>Phase Noise</td>
<td><0.75 degrees RMS double-sided, 100 Hz to 1 MHz</td>
<td><1.2 degrees RMS double-sided, 100 Hz to 1 MHz</td>
</tr>
<tr>
<td>Output Spectrum/Filtering</td>
<td>Meets IESS-308-309 power spectral mask</td>
<td></td>
</tr>
<tr>
<td>Alpha (Rolloff)</td>
<td>5%, 10%, 15%, 20%, 25% and 35%</td>
<td></td>
</tr>
<tr>
<td>Harmonics and Spurious</td>
<td>60 dBc/4 kHz from 600 to 2600 MHz (L-Band), from 1 to 400 MHz (IF)</td>
<td></td>
</tr>
<tr>
<td>Transmit On/Off Ratio</td>
<td>55 dB minimum</td>
<td></td>
</tr>
<tr>
<td>External TX Carrier Off</td>
<td>By TTL LOW signal, or RTS</td>
<td></td>
</tr>
<tr>
<td>TX Clock Options</td>
<td>Internal (SCT), external (TT), loop timing with symmetric or asymmetric operation (data interface dependent)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulator</th>
<th>CDM-570A-IPEN</th>
<th>CDM-570AL-IPEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Power Range</td>
<td>-30 to -60 dBm</td>
<td>-130 + 10 log symbol rate, dBm (minimum)</td>
</tr>
<tr>
<td>Max Composite Level</td>
<td>+35 dBc, up to -5 dBm absolute max</td>
<td>+40 dBc, up to -5 dBm absolute max</td>
</tr>
<tr>
<td>Acquisition Range</td>
<td>±1 to ±32 kHz, 1 kHz step</td>
<td>±1 to ±32 kHz, 1 kHz step, symbol rate <= 625 ksp</td>
</tr>
<tr>
<td>Acquisition Time</td>
<td>Highly dependent on data rate, FEC rate, and demodulator acquisition range. Example: 120 ms average at 64 kbps, Viterbi Rate 1/2 QPSK, ±10 kHz acquisition sweep range, 6 dB E/No</td>
<td></td>
</tr>
</tbody>
</table>
Environmental & Physical

- **Temperature**: Operating: 0 to 50°C (32 to 122°F)
 Storage: -40 to 85°C (-40 to 185°F)
- **Humidity**: 95% maximum, non-condensing
- **Power Supply**: 100 to 240 VAC, 50/60 Hz
 - 24 VDC (HW option)
 - 48 VDC (HW option)
- **Power Consumption**
 - CDM-570A-IPEN: 42 W typical without CnC
 - CDM-570A-IPEN: 48 W (max) with CnC
 - CDM-570AL-IPEN: 42 W typical without CnC or BUC Power Supply
- **Dimensions (height x width x depth)**
 - CDM-570A-IPEN: 1.75” x 19” x 13”
 (4.4 x 48.3 x 33 cm)
 - CDM-570AL-IPEN: 1.75” x 19” x 16”
 (4.4 x 48.3 x 40.6 cm)
- **Weight**
 - CDM-570A-IPEN: 6.6 lbs (2.99 kg)
 - CDM-570AL-IPEN: 8.5 lbs (3.86 kg) (with 24 VDC BUC P/S)

Operations & Maintenance

- **Configuration and Management**
 - Front panel
 - Remote port – EIA-232 or EIA-485 (2- or 4-wire)
 - 10/100BaseT Ethernet
 - SNMP with MIB II and private, modem-specific MIB
 - Telnet
 - Web browser (HTTP)
 - Command Line Interface
- **Software/firmware upgrade via FTP**
- **Faults and alarms**
- **Configuration backup and restoration**
- **Security**
 - Password protection for web, ftp and telnet
- **Access list**

Accessories

- **CRS-170A**
- **CDM-570AL-IPEN**: 1:1 Modern Redundancy IF Switch
- **CRS-180**
- **CDM-570A-IPEN**: 1:1 Modern Redundancy IF Switch

Available Options

- **How Enabled**
- **Option**
 - **Hardware**
 - Power supply, AC input
 - Power supply, -24 VDC input
 - Power supply, -48 VDC input
 - 24 VDC, 90 W @ 50°C (100 W @ 30°C) BUC power supply, AC input
 - 48 VDC, 150 W @ 50°C (180 W @ 30°C) BUC power supply, AC input
 - DoubleTalk Carrier-in-Carrier board
 - VersaFEC-2 Codec board
 - **Fast**
 - Turbo Codec board
 - 8PSK, 8-QAM modulation
 - 16-QAM modulation
 - Viterbi+RS, 4.4 Mbps when using TPC codec
 - 4.666 Mbps when using TPC codec
 - 1.1 Mbps, 2.5 Mbps, 5 Mbps, 10.239 Mbps
- **Celcius**
 - BUC Power Supply
 - 24 or 48 VDC input
 - IP ACM Symbol Rate – 375 kbps, 750 kbps, 1.5 Mbps, 2 Mbps or 3 Mbps (VersaFEC or VersaFEC-2)
 - Optimized Transmit Filter Rolloffs (5%, 10%, 15%, 20% and 25%) – 512 kbps, 1.1 Mbps, 2.5 Mbps, 5 Mbps or 10.239 Mbps
 - VersaFEC Codec Data rate (CCM) – 512 kbps, 1.1 Mbps, 2.5 Mbps, 5 Mbps or 10.239 Mbps
 - TPC Codec (CCM) for Rate 5/16, 21/44, 3/4 and 7/8 (Rate 5/16, 21/44, 3/4 and 7/8 can be supported with or without the TPC board) Not required if TPC board is present.
 - DoubleTalk Carrier-in-Carrier Data Rate (full) – 512 kbps, 1.1 Mbps, 2.5 Mbps, 5 Mbps, 10.239 Mbps
 - DoubleTalk Carrier-in-Carrier Data Rate (fractional) – 2.5 Mbps, 5 Mbps, 10.239 Mbps
 - Reed Solomon Codec
 - G.703 clock extension
 - Header compression, Payload compression, Quality of Service (QoS), VMS Integration
 - CarrierID

Regulatory

- **CE Mark**
 - EN 301 489-1 (ERM)
 - EN55022 (Emissions)
 - EN55024 (Immunity)
 - EN 61000-3-2
 - EN 61000-3-3
 - EN60950 (Safety)
- **FCC**
 - FCC Part 15
 - FCC Subpart B
 - FCC Part 15, Subpart B
 - FCC Part 15, Subpart B

CDM-570AL-IPEN